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Abstract. Deformation of solids is discussed based on a recent field theory. Applying the basic physical principle, known as
local symmetry, to the elastic force law, this theory derives field equations that govern dynamics of all stages of deformation on
the same theoretical basis. The general solutions to the field equations are wave functions. Different stages of deformation are
characterized by different restoring mechanisms that generate the wave characteristics. Elastic deformation is characterized by
longitudinal restoring force, plastic deformation is characterized by transverse restoring force accompanied by longitudinal energy
dissipative force. Fracture is characterized by the final stage of plastic deformation where the solid has lost both restoring and
energy dissipative mechanisms. Experimental observations that support these wave dynamics are presented.
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1. INTRODUCTION

Conventionally, elastic deformation, plastic deformation and fracture of solids are discussed by different
theories based on the phenomenology. In reality, elastic and plastic deformations coexist in a given stage; a
freshly annealed metal specimen has a number of dislocations that are activated by an external load causing
local plastic deformation, and a metal specimen about to fail recovers from the deformation to a certain
extent if the load is removed. For accurate analysis of deformation and fracture, it is necessary to use a
theory that can describe all stages of deformation comprehensively.

For comprehensive description of deformation and fracture, it is essential that the theory is based on a
fundamental level of physics. In this regard, a recent field theory of deformation and fracture has strength
[1]. Applying the physical principle known as local symmetry to the elastic force law (Hooke’s law), this
theory (the field theory) formulates all stages of deformation on the same theoretical basis. In the situation
where elastic deformation coexists with plastic deformation, the regions experiencing elastic deformation
(call the deformation structural element, DSE) obeys Hooke’s law. Deformation dynamics in each DSE can
be described by the deformation gradient tensor expressed in the local coordinate system (frame). When the
applied load is low, the entire object is deformed approximately elastically as a single DSE. Mathematically,
this means that the transformation representing the deformation gradient tensor (called transformation U)
is coordinate-independent. When the solid enters the plastic regime (past the yield point), multiple DSE’s
start to behave differently from one another. Each DSE has its own principal axes along which it is stretched
or compressed. Mathematically, the transformation U becomes coordinate-dependent. Components of the
deformation tensor are first-order derivatives of the displacement. If the tensor is coordinate-dependent, it
means that the displacement components have second or higher-order dependence on the space coordinates;
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the force law becomes nonlinear when expressed in the global coordinates1. In other words, the linear elastic
theory becomes not locally symmetric.

To regain the local symmetry, the field theory replaces the usual derivatives with covariant derivatives
by adding a gauge term. This enables us to formulaically express the transformation U with the first-order
derivatives in the global coordinate system, hence to describe deformation dynamics of the entire object
with a single transformation. From the viewpoint of dynamics, since this formulaic description does not
represent the true physics, some adjustment is necessary. The vector field derived from the gauge term,
the gauge field, makes the adjustment via the field force acting on the charge of symmetry. In terms of
the geometry, this adjustment can be viewed as that of the potential associated with the gauge field aligns
all DSE’s to the same orientation so that differential operation can be performed commonly in the global
coordinate system. Hence, the potential is rotational by nature. Applying the Lagrangian formalism to the
gauge field, the field theory derives field equations that describe the dynamics associated with the field force.

The solutions to the field equations are wave functions, reflecting the restoring nature of elasticity. The
charge of symmetry is incorporated into the field equations as the source terms. The irreversibility of plastic
deformation is represented by energy dissipative motion of the charge, which causes the plastic wave to
decay. Fracture is formulated as the final stage of deformation where the material loses the mechanism to
dissipate the mechanical energy provided by the external agent (the load). The aim of this paper is to discuss
the deformation dynamics from the viewpoint of wave dynamics. It will be shown that elastic deformation
is represented by longitudinal wave dynamics where the restoring force is longitudinal. Plastic deformation
is represented by transverse wave dynamics where the restoring mechanism is shear force associated with
the above-mentioned rotational potential and the longitudinal effect is energy dissipative being associated
with the charge motion. A solitary wave can be generated in the transitional stage from the elastic to plastic
regime. Supporting experimental observations will be discussed.

2. THEORETICAL

Details of the field theory can be found elsewhere [1]. In accordance with the above argument, the field
theory defines covariant derivatives as Di = ∂/∂xi −Γi ≡ ∂i −Γi. Here Γi is the gauge term associated
with the derivatives with respect to xi. With this definition, the total differential of the i-th component of
displacement vector ξ can be expressed as

Dξi =

(
∂ξi

∂x
−Γxξi

)
dx+

(
∂ξi

∂y
−Γyξi

)
dy+

(
∂ξi

∂ z
−Γzξi

)
dz ≡ dξi −Ai. (1)

Here, Ai is the i-th component of the rotational vector that aligns all DSE’s to regain the local symmetry of
the linear elastic law. Figure 1 illustrates this situation schematically. In elastic deformation, the rotation
matrix represents rigid body rotation of the material, which does not involve length change. In Eq. (1),
the actual change in the length of displacement vector is all in dξi. Thus, Ai can be identified as the i-th
component of the rotation tensor (the asymmetric portion of the displacement gradient tensor) [2]. The
temporal component of A can be understood as the same compensation effect in the time domain. In wave
dynamics, the temporal differentiation of the wave function ψ is related to the spatial differentiation in the
direction of the propagation vector k via phase velocity c as ψ̇ = −(∇ψ) · ck̂. This interpretation leads to
the four-vector potential expression of A as

Aµ =
(
A0,A1,A2,A3)= (ϕ 0

c
,A1,A2,A3

)
. (2)

1 Note that the coordinate dependence of the transformation matrix does not necessarily cause plastic deformation. Instead, it
makes the deformation curvilinear. The deformation becomes plastic when the material exerts energy-dissipative longitudinal
force, as will be discussed shortly. Also note that this nonlinearity is based on the coordinate dependence of the transforma-
tion matrix that represents linear elasticity as the base theory. Hence, the present field theory does not cover nonlinear
elasticity in general unless we use a variable elastic modulus in the field equation.
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Fig. 1. Vector potential as displacement vector to align deformation structural elements. Transformation matrix U operating on a
line element vector η changes its length.

The effect of A on the deformation dynamics at the global level can be formulated by comparing
clockwise and counterclockwise covariant derivatives, or the quantity known as the field stress tensor Fµν :

Fµν ≡
[
Dµ ,Dν

]
ξsds =

(
∂νAµ −∂µAν

)
+

1
ξsds

[
Aµ ,Aν

]
. (3)

Each component of vector potential (2) represents a displacement. It is easily proved that they are commut-
able, hence

[
Aµ ,Aν

]
term of Eq. (3) is zero. With this, we obtain the explicit form of Fµν as

Fµν =


0 −v1/c −v2/c −v3/c

v1/c 0 −ω3 ω2

v2/c ω3 0 −ω1

v3/c −ω2 ω1 0

 . (4)

Here vi, i = 1,2,3 is the time derivative of Ai, and ω i, i = 1,2,3 is the rotation defined as

ωk =
∂A j

∂xi −
∂Ai

∂x j , (5)

c appearing in the time components of Eq. (4) is the phase velocity defined in Eq. (2). As A represents
rotation of a DSE, we can identify c as representing the phase velocity due to the shear force that
neighbouring deformation structural elements exert each other

cshear =
√

(G/ρ), (6)

where G is the shear modulus and ρ is the density. It is easily proved that the trace FµνFµν is invariant [2]
under transformation U . This indicates that we can construct Lagrangian of the free particle (the dynamics
of unit volume without the interaction with the gauge field or vector potential) in the form proportional to
FµνFµν . Using the phase velocity (6) and adding the interaction terms with the gauge field, we can identify
the full Lagrangian density as

L =−G
4

FµνFµν +G jµAµ =
ρv2

2
− Gω2

2
+

G
c

j0A0 +G jiAi. (7)

Here the first two terms represent the Lagrangian density of the free particle in the form of the kinetic energy
of the unit volume minus the rotational spring potential energy, and the third and fourth terms represent
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the interaction; j0 and ji are the temporal and spatial components of the quantity known as the charge of
symmetry, and they are connected with the phase velocity (6) as jµ = ( j0/c, j1, j2, j3). With Lagrangian
density (7), the Euler-Lagrangian equation of motion associated with Aµ can be given as

∂ν
∂L

∂ (∂νAµ)
− ∂L

∂Aµ
= 0. (8)

This leads to the following field equations:

∇ · v =− j0, (9)

∇× v =
∂ω
∂ t

, (10)

G∇×ω =−ρ
∂v
∂ t

−Gj, (11)

∇ ·ω = 0. (12)

Rearranging the terms, we can put the field equation (11) in the following form [2,3]:

ρ
∂v
∂ t

=−G∇×ω −Gj. (13)

The left-hand side of Eq. (13) is the product of the mass and acceleration of the unit volume. Hence, the
right-hand side of Eq. (13) is the external force acting on the unit volume, where the first term G∇×ω is the
shear force exerted by the neighbouring DSE’s due to their differential rotations, and the second term Gj is
the longitudinal force density. The form of this second term differentiates the regimes of deformation from
one another, as will be discussed below.

3. WAVE DYNAMICS OF DEFORMATION

3.1. Elastic compression wave

In the pure elastic regime, the field equations yield longitudinal wave solutions. By taking divergence of the
left- and right-hand sides of Eq. (13) and using the mathematical identity ∇ · (∇×ω) = 0, we obtain

ρ
∂ (∇ · v)

∂ t
=−∇ · (Gj). (14)

By putting Gj = −(λ +2G)∇(∇ · ξ ) with the Lamé’s constant λ , we can rewrite Eq. (14) as the following
differential equation

∂ 2(∇ ·ξ )
∂ t2 = ∇2 (λ +2G)

ρ
(∇ ·ξ ). (15)

Here ∇(∇ · ξ ) is the gradient of the volume expansion ∇ · ξ and Gj represents the elastic force acting on a
unit volume due to the differential stretch at the leading and tailing planes.

Equation (15) is the equation of elastic compression wave travelling at the phase velocity of√
(λ +2G)/ρ .
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3.2. Plastic transverse decaying wave

In the pure plastic regime, the field equations yield transverse wave solutions reflecting the shear restoring
force G∇×ω in Eq. (13). In Eq. (7), this force is associated with the rotational spring potential energy.
In this case, the longitudinal force Gj represents energy dissipative force as follows. Equation (14) can be
viewed as the equation of continuity associated with the conservation of charge ρ∇ · v = −ρ j0 (called the
deformation charge). Thus, we can put

Gj = Wdρ(∇ · v), (16)

where Wd is the drift velocity of the deformation charge of the unit volume. Optical interferometric fringe
patterns2 obtained in tensile experiments often show band patterns like the one shown at the top of Fig. 2
(enclosed by a dashed-line) [4–6]. As the middle drawing in this figure illustrates, the band pattern consists
of concentrated, equi-distant, parallel fringes. As each fringe represents a contour of displacement, this
pattern represents a quantity proportional to dvi/dxi where xi is the coordinate axis the interferometer is
sensitive to and vi is the xi-component of the velocity vector. When the interferometer is sensitive to a pair
of orthogonal axes (the x and y axes), this type of pattern is observed at the same time and location in both
axes [4]. Thus, it can be interpreted as representing dvs/dxs = ∂vi/∂xi + ∂v j/∂x j = ∇ · v, where s is the
direction perpendicular to the parallel fringes and i and j are the orthogonal axes that the interferometer
is sensitive to. Thus, this type of band-structured fringe pattern can be interpreted as a developed, one-
dimensional deformation charge. Here the word ”developed” is used to mean that the charge is across the

Fig. 2. Developed one-dimensional charge observed in a tensile experiment on a structural steel specimen with a constant cross-
head speed of 2.5 (µm/s) [6].

2 The fringe patterns are formed with the technique known as the Electronic Speckle-Pattern Interferometry (ESPI.) The ESPI
setup takes the image of an object illuminated by a pair of laser beams originating from the same laser source at each time
step while the object is being deformed. Each image consists of a number of speckles resulting from coherent superposition
of the two laser beams, diffusively reflected off the object surface. The optical phase of each speckle is proportional to the
relative optical path length of the two laser beams (beam 1 and beam 2.) When points of the object are displaced in such a
way that the displacement increases the optical path length of beam 1 and decreases that of beam 2, the phase of the corres-
ponding speckle changes accordingly. By subtracting the image taken at a certain time step from that taken in another time
step, one can map out the pattern of the corresponding displacement as a two-dimensional fringe pattern. Here a dark fringe
represents the contour of the displacement that corresponds to the phase change of an integer multiple of 2π .
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width of the specimen, and the charge is considered to be one-dimensional as its spatial dependence can
be expressed with the single variable xs. The physical meaning of the developed charge can be argued as
follows. When particles flow in xs direction with a velocity gradient, the acceleration of a unit volume
is dvs/dt = (dvs/dxs)(dxs/dt) = (dvs/dxs)vs. Here vs = dxs/dt is the average velocity of the particles in
the unit volume. Thus, the external force that accelerates the unit volume is ρ(dvs/dt) = ρ(dvs/dxs)vs =
ρ(∇ · v)vs. Comparison of this acceleration and the right-hand side of Eq. (16) indicates that if Wd = vs, Gj
is the external force that accelerates the unit volume. If Wd > vs, as the bottom drawings of Fig. 2 indicate,
the particles behind the band (the hatched portion in the drawing) experience reduction in their velocity,
hence lose the momentum. It follows that if a positive/negative charge flows in the same/opposite direction
to the local velocity of the material faster than the particles, the energy is dissipated via this mechanism of
momentum loss. Here, a charge is said to be positive/negative when ∇ · v is positive/negative. We can put

Wd = σ0v (17)

to express the degree of the energy dissipation; the greater is σ0, the more energy is dissipated. The reduction
in the particles’ momenta behind a charge is due to reduction in the stiffness, caused by the propagation of
dislocations. Dislocation theory explains that dislocations are driven by shear force and move at a constant
velocity because the shear force is in equilibrium with frictional force [7]. The energy dissipative nature of
the longitudinal force Gj can be attributed to this frictional force. Since the frictional coefficient is a material
constant, σ0 can be considered as a material constant. In fact, a previous series of tensile experiments [8] on
an aluminium alloy indicate that σ0 is constant at approximately 3000 under different cross-head speeds in
a range of 0.1 to 3.0 mm/min.

With Eqs (16) and (17), Eq. (13) becomes

ρ
∂v
∂ t

=−G∇×ω −σ0ρ(∇ · v)v =−G∇×ω −σcv. (18)

On the right-hand side, the first term is the recovery force due to shear deformation, and the second term
represents the energy dissipation. Being proportional to the velocity, the second term can be interpreted
as representing a velocity damping force, where σc = σ0ρ(∇ · v) is the damping coefficient. This effect is
interpreted as the energy dissipative nature of plastic deformation. Elimination of ω from Eq. (18) with the
use of the field equation (10) leads to the following wave equation that governs v:

ρ
∂ 2v
∂ t2 −G∇2v+σc

∂v
∂ t

=−G∇(∇ · v). (19)

Transverse wave characteristic has been experimentally observed in the displacement component
perpendicular to the tensile axis in an aluminium alloy specimen under monotonic tensile load with the
cross-head speed of 0.1 mm/min [9]. Figure 3 shows the oscillatory behaviour of the displacement, observed
at a reference point P2. In this experiment, a developed charge started to appear in the final stage of plastic
deformation. The exponential decay of the oscillation observed prior to the appearance of the developed
charge indicates that the charges are uniformly distributed over the specimen, allowing us to put ∇(∇ ·v) = 0
on the right-hand side of Eq. (19). Under this condition, the general solution to Eq. (19) has the

v = v0e−
σc
2ρ t cos

((
G
ρ

k2 − σ 2
c

4ρ2

)1/2

t −k · r

)
. (20)

Here v is the particle velocity vector, v0 is its amplitude, k is the propagation vector, and r = xx̂+ yŷ+ zẑ
is the position vector of the coordinate point. In the experiment that yields Fig. 3, the interferometer is
sensitive to the x-component of v and the reference points P1–P3 (Fig. 3) are along a line of constant x, say
x0. The observed wave can then be put in the following form

vx = v0xe−
σc
2ρ t cos

((
G
ρ

k2 − σ2
c

4ρ2

)1/2

t − kyy+ϕ0

)
. (21)
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Fig. 3. Decaying oscillation observed in a transverse plastic deformation wave along with the loading characteristics. ”u” is the
velocity component perpendicular to the tensile axis. The dashed-line plot with circular markers shows the applied load. ”charge”
indicates the locations where developed charges appear. The dashed line is an exponential fit to the oscillation peaks.

Here x is the axis perpendicular to the tensile axis, vx is the x-component of the velocity, v0x is the
amplitude, ky is the y-component of the propagation vector, ϕ0 is the constant phase associated with −kxx0
part of the phase term k · r in Eq. (20), and the z component is omitted as the ESPI setup does not have
sensitivity in z. Equations (20) and (21) indicate that the time constant of the exponential decay is 2ρ/σc:

τc =
2ρ
σc

=
2

σ0(∇ · v)
. (22)

Based on the above hypothesis that σ0 is a material constant and for aluminium alloys σ0 = 3000, we
can estimate the charge density (∇ · v) for the case shown in Fig. 3. With τc = 400 s as estimated from
the exponential decay observed in this figure and Eq. (22), (∇ · v) = 2/(400× 3000) = 1.7× 10−6 (1/s).
Note that this value of charge density is observed when the velocity field decays exponentially with no
developed charge (like the one shown in Fig. 2) formed. It is interesting to compare this value with a
typical value when a developed charge is formed. As mentioned above, the density of a developed charge
can be expressed as ∇ · v = dvs/dxs where s denotes the component perpendicular to the band structure of
the charge. Considering that the tensile axis component of dvs is approximately equal to the cross-head
speed of 2.5× 10−6 m/s (because under this condition the strain is concentrated within the region of the
developed charge), and that the width of a typical band is 5 mm in the xs direction and therefore 5.2 mm
along the tensile axis3, the charge density in this case can be evaluated as dvx/dxs ∼= 2.5×10−6/5.2×10−3 =
4.8× 10−4 (1/s). Apparently, the density of a developed charge is two-orders of magnitude higher than
the above charge density estimated when a developed charge is not formed. Accordingly, the decay time
constant is shorter by the same factor, being of the order of (s). This indicates that under the condition where
a developed charge is formed, the wave characteristic of the velocity field decays instantaneously. This is
consistent with a previous experimental observation [9] that the transverse wave characteristic disappears as
a developed charge is formed.

Although this orders-of-magnitude increase in the charge density associated with the formation of a
developed charge is a subject of future investigation, two factors can be argued as possible causes for the
increase. The first factor is the transition of the longitudinal force from the purely elastic to plastic mode.
The charge density (∇ · v) is essentially the rate of the volume expansion (∇ · ξ ). When the dynamics is
purely elastic, the volume expansion represents the local stretch and its rate is the elastic force represented

3 The angle of the band to the tensile axis observed in Fig. 2 is used to calculate the band width along the tensile axis.
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by the elastic longitudinal force Gj =−(λ +2G)∇(∇ ·ξ ), as discussed above. As the deformation develops
towards the purely plastic regime, the longitudinal force becomes partially energy-dissipative as represented
by Gj = Wdρ(∇ · v). As this transition takes place, the effect of the shear restoring force G∇×ω becomes
substantial, generating the transverse wave characteristic in the velocity field. With further progress of
deformation, the energy-dissipative portion of the volume expansion rate increases, contributing to the
increase in the charge density (∇ · v). The second factor is associated with the stress concentration. If
the energy-dissipative volume expansion is uniformly distributed over the entire specimen, the energy
dissipation takes place rather uniformly causing the exponential decay of the transverse wave as observed
in Fig. 3. However, if for some reason, shear stress is intensified at a certain location of the specimen,
the propagation of dislocations is enhanced locally and the shear strain is concentrated in that location. In
other words, the volume expansion is localized, making the denominator of (∇ ·v) = dvs/dxs smaller even if
the numerator dvs, the differential displacement at the boundaries (at the two grips of the tensile machine),
remains the same. In this stage, it is expected that the damping coefficient σc = σ0ρ(∇ ·v) is so high that the
transverse wave characteristic cannot be sustained, as observed in Fig. 3 around t = 21 min when the first
developed charge is formed.

3.3. Solitary wave in transitional regime

Experiments [4–6] show that in the transitional stage from the elastic to the plastic regime, a deformation
charge similar to Fig. 3 drifts continuously. From various behaviours such as that the drift velocity is
proportional to the tensile (cross-head) speed, this type of deformation charge has been identified as
representing the same physical event as the Lüders band [6]. As shown in Fig. 2, inside a deformation
charge of this type the velocity field depends only on xs, the coordinate axis perpendicular to the parallel
fringes; i.e., ∂/∂xp = 0 in the two-dimensional picture, where xp is the axis parallel to the fringes. This
situation leads to (∇×ω)s = 0, and ∇ · v = dvs/dxs. The former condition indicates that in the direction
perpendicular to the fringes (the band), the shear force is ineffective. The latter condition indicates that
the longitudinal force in this direction can be either the elastic force proportional to dξs/dxs, the energy-
dissipative force proportional to dvs/dxs, or both. Here, we continue the argument assuming that both
types of longitudinal force are effective. Since ∂/∂xp = 0, the Poisson’s effect is inactive in the elastic
deformation, and the dynamics along the xs axis can be treated as a one-dimensional problem similar to
a longitudinal compression wave propagating through a bar of elastoviscous medium. Judging from the
fringe pattern that exhibits null or very little deformation outside the banded region, we can assume that this
elastoviscous dynamics is localized in the banded region. Considering that the displacement of the banded
region (the charge) from its equilibrium position, X , is the differential displacement of its front and back
end, we can express the potential energy of the region due to elasticity as

U =
1
2

ksX2 =
1
2

ks

(
∂ 2ξs

∂x2
s

)2

(δxs∆xs)
2 =

SE
2

(
∂ 2ξs

∂x2
s

)2

δxs(∆xs)
2, (23)

where ks is the spring constant (stiffness) in the xs direction, S is the cross-sectional area, E is the Young’s
modulus, δxs is the infinitesimal width of the front and back ends of the band, and ∆xs is the width (span)
of the band. This leads to the Lagrangian density as

Lcharge =
U

S∆xs
=

E
2

(
∂ 2ξs

∂x2
s

)2

(δxs∆xs) =
E
2
(∂ 2

xs
ξs)

2(δxs∆xs), (24)

and the corresponding term of the Euler Lagrangian equation of motion as

∂ 2
xs

(
∂Lcharge

∂ (∂ 2
xs

ξ )

)
= E∂ 2

xs
(∂ 2

xs
ξs)(δxs∆xs) = E∂ 4

xs
ξs(δxs∆xs) =− E

cw
∂ 3

xs
(∂tξs)(δxs∆xs). (25)
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Here the spatial derivative is replaced with the temporal derivative as ∂xsξs = −∂tξs/cw (the same
replacement as Eq. (2) where cw is the phase velocity in this case) going through the last equal sign.
Equation (25) represents the elastic force acting on the charge. With this force, Eq. (18) becomes

ρ∂tvs =−σ0vsρ∂ 1
xs

vs −
Eδxs∆xs

cw
∂ 3

xs
vs, (26)

where ∇ · v is replaced by ∂ 1
xs

vs ≡ ∂vs/∂xs. Equation (26) is known to yield solitary-wave solutions in the
following form [10].

vs = a sech2 (b(xs − cwt)) . (27)

Here a is the amplitude in (m/s), b is a shape constant in (1/m), and cw is the wave velocity in (m/s).
Substitution of Eq. (27) into Eq. (26) leads to the following conditions for cw and b:

cw =
σ0a

3
, (28)

b =
(σ0a

3

)√ ρ
4Eδxs∆xs

. (29)

Condition (28) indicates that the solitary wave velocity cw is proportional to the particle velocity at the
peak of the solitary wave (the amplitude a in Eq. (27).) Since the particle velocity is proportional to the
cross-head speed, this is consistent with the experimental observation that the drift velocity of a Lüders
band is proportional to the tensile speed.

Interpreting that the solitary wave causes energy dissipation by the mechanism discussed in Fig. 2, we
can put cw =Wd . From Eq. (17), this leads to a = 3v, where v is the nominal particle velocity (the velocity
that the particle would have if the charge did not flow), indicating that the peak particle velocity in a solitary
wave is three times higher than the nominal particle velocity. The observation that at the peak of the solitary
wave the particle moves faster than the nominal velocity leads to the following argument, which connects
the solitary wave dynamics to the conventional, microscopic-deformation dynamics. Dislocation theory
explains that dynamic dislocations propagate in the direction of the maximum shear stress and that a Lüders
band is formed when the dislocations complete their propagation across the width of a specimen, bridging
the two sides of the specimen. When this bridging event takes place, the material slips along the line of the
maximum shear stress. This reconfigures the local atomic arrangement, causing a partial breakage of the
material. A previous experimental observation that the formation of the optical band pattern representing a
developed charge is accompanied by acoustic emission [11] supports this argument. As this partial breakage
occurs, the material recoils in mutually opposite directions on the two sides of the partial breakage (both
sides shrink back in the respective directions). Near the centre of this region, it is expected that the recoiling
velocity exceeds the nominal particle velocity determined by the cross-head speed.

Solitary waves are known to retain their shapes while interacting with one another. No experimental
observation has been made that demonstrates multiple, developed charges or Lüders bands passing one
another. Whether or not the present type of solitary waves retain their shapes on interaction is an interesting
subject for future investigation, and some comments are being made here. In tensile experiments with a
constant cross-head speed, often a pair of developed charges generated near the two ends of a specimen
(near the shoulder at each end where the width of the dog-bone style specimen increases from that of the
middle parallel part to the wider part gripped by the tensile machine) are observed to move toward the
middle of the specimen at the same speed, and disappear as soon as they run into each other. It seems
that this phenomenon represents the fact that once Lüders bands complete sweeping the entire specimen the
mechanism that sustains the dislocations to keep bridging the specimen at the front of the band ceases, and
therefore a new band is not formed anymore. It is unlikely that it represents that the two solitary waves
destroy each other. It is well known that in the case of carbon steels Lüders bands sweep along the specimen
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only once during the yield plateau, and that as soon as the sweep is over the stress resumes to rise4. From the
viewpoint of microscopic deformation, the following argument indicates that developed charges retain their
shapes, if they pass each other. According to dislocation theory, dislocations associated with Lüders bands
propagate along the line of maximum shear stress, not on a specific crystallographic plane. Therefore, it is
impossible for the dislocations of one charge to switch their path onto that of the other interacting charge
(cross-slipping does not occur).

Noting that
√

E/ρ represents the phase velocity of a longitudinal elastic wave celas, we can rewrite
Eq. (29) in the following form

b =
cw

celas

1
4
√

δxs
√

∆xs
. (30)

With typical values of celas = 5.2 km/s, cw = 100 mm/min and b−1 = 5 mm (the inverse of a width
of developed band-like charge), Eq. (30) leads to

√
δxs

√
∆xs = 4× 10−10 m. In the infinitesimal limit,

δxs = ∆xs. Thus, this estimation leads to δxs = ∆xs of the order of a few angstrom. This value is comparable
to the inter-atomic distance. This observation indicates that the elastic dynamics within a developed change
occurs at the atomistic scale.

4. CONCLUSIONS

Wave dynamics of deformation have been discussed based on a recent field theory. The field equations
have been derived with the use of the Lagrangian formalism. It has been shown that the field equations
represent the spatiotemporal behaviour of the differential displacement field of the object under deformation.
Longitudinal wave characteristics in the pure elastic regime, transverse, decaying wave characteristics
in the pure plastic regime, and solitary wave characteristics in the transitional stage from the elastic to
plastic regime have been derived as solutions to the field equations, and their physical meanings have been
discussed. Some experimental observations that exhibit these wave dynamics have been presented. Further
investigations are necessary to consolidate the theorization of these wave dynamics, in particular, the solitary
wave dynamics.
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Tahkiste deformatsiooni lainelaadne iseloom ja deformatsioonidünaamika üksikasjalik
kirjeldus

Sanichiro Yoshida

On uuritud tahkiste deformatsiooni, lähtudes tänapäevasest väljateooriast. Lagrange’i formalismist lähtu-
des on tuletatud väljavõrrandid, mis kirjeldavad kõiki deformatsioonistaadiume samadel teoreetilistel
alustel. Väljavõrrandite üldlahenditeks on lainefunktsioonid. Erinevatele deformatsioonistaadiumidele
on iseloomulikud erinevad taastumismehhanismid: elastset deformatsiooni iseloomustab taastav pikijõud,
plastset deformatsiooni aga taastav põikjõud koos energia dissipatsioonist põhjustatud pikijõuga. Purune-
mist vaadeldakse kui plastse deformatsiooni viimast staadiumi, kus tahkises on kadunud nii taastumis- kui
ka dissipatsioonimehhanismid. Artiklis on esitatud ka teoreetilisi arutlusi kinnitavaid eksperimentaalseid
tulemusi.


