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1. INTRODUCTION 

Wild animals harbor a diverse community of bacteria and fungi (reviewed in 
Clayton 1999). Considering the important impact that symbiotic and parasitic 
microorganisms can have on their hosts (Hackstein & Van Alen 1996, Nuttall 
1997), investigating microbe-host interactions may help to explain behavioral 
and reproductive variation within and between host populations. However, 
detailed research into the bacterial loads of wild animals and the influence of 
bacteria on hosts has been limited by the requirement for very complex 
methods. Recently, however, molecular and microbiological techniques have 
developed rapidly, and avian ecologists have adopted these methods with great 
enthusiasm (e.g. Burtt & Ichida 1999, Lucas et al. 2005, Shawkey et al. 2005). 
The number of papers indexed in the Thomson Reuters Web of Science dealing 
with feather bacteria increased approximately seven-fold between the last 
decade of 20th century and the first decade of the new century, clearly 
illustrating the explosion of interest in the topic. The evidence generated by this 
recent work suggests that plumage bacteria play an important role in shaping 
the life histories of wild birds (Clayton & Moore 1997, Burtt & Ichida 1999, 
Muza et al. 2000, Gunderson et al. 2009). 

Birds make significant efforts to maintain plumage function and to control 
ectoparasite load. Preening and other forms of grooming are critical for limiting 
the abundance of feather lice and other arthropods (Hart 1997). Behaviors such 
as anting, dusting, sunning, and the inclusion of green vegetation in nesting 
material may also defend against ectoparasites and bacteria (Clayton 1999). 
Moreover, laboratory studies indicate that uropygial oil protects plumage – 
either chemically (Shawkey et al. 2003a, Ruiz-Rodriguez et al. 2009) or 
physically (Reneerkens et al. 2008) – against damage by feather-degrading 
bacilli (see also Møller et al. 2009).  

Bird plumage can host various assemblages of bacteria and fungi, several of 
which are capable of degrading feather keratin (Sangali & Brandelli 2000, Lucas 
et al. 2003b, Riffel et al. 2003, Shawkey et al. 2003a). Bacterial damage to 
feathers may have important fitness consequences for wild birds. Plumage 
deterioration may result in decreased thermal insulation (Brush 1965) and 
aerodynamic efficiency (Swaddle et al. 1996). In the long-term, these negative 
effects might reduce parental survival and reproductive success; the latter via 
changes in parental condition (Burtt & Ichida 1999, Muza et al. 2000) or 
indirectly through the trade-off between reproductive effort and self-preening 
behavior (Burtt & Ichida 1999, Merilä & Hemborg 2000, Muza et al. 2000). 
Furthermore, feather-degrading bacteria could also affect plumage-based 
communication between birds by changing feather coloration. Given that 
plumage coloration is believed to reflect individual quality (Hamilton & Zuk 
1982), bacterial-induced changes in this trait may reduce individual reproductive 
success by influencing social dominance and mate choice (Shawkey et al. 2007, 
Gunderson et al. 2009, Shawkey et al. 2009a, Ruiz.-de-Castaneda et al. 2012). At 
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the same time, many bacteria detected on feathers produce antimicrobial 
substances (Riley & Wertz 2002, Peralta-Sanchez et al. 2010) and may therefore 
play a role in protecting eggs from infections with pathogenic bacteria 
(Gunderson et al. 2008, Shawkey et al. 2009b, Peralta-Sanchez et al. 2010). 
However, certain feather-inhabiting bacteria may also act as pathogens (Bruce & 
Drysdale 1994). Little is known about interspecific antagonism and dominance 
within the bacterial communities inhabiting feathers, although such processes 
may play an important role in determining individual bird fitness. For example, 
when fast-growing generalist bacterial species (dominants) are present in a 
community, they might depress overall bacterial diversity (Martin-Platero et al. 
2006, Soler et al. 2008, Peralta-Sanchez et al. 2010). 

Feather-degrading bacteria probably associate with all species of wild birds 
(Burtt 2009), and within-species many, if not all, individuals harbor such bacteria 
in their plumage (Gunderson et al. 2009, Peele et al. 2009). However, to date, 
relatively few studies have examined the factors that shape feather-degrading 
bacterial assemblages in avian plumage (see Muza et al. 2000, Shawkey et al. 
2003a, Burtt & Ichida 2004, Cristol et al. 2005, Lucas et al. 2005, Saranathan & 
Burtt 2007). The variability of keratinolytic bacterial assemblages colonizing bird 
plumage is most likely related to avian feeding behavior (e.g., ground versus 
canopy birds – Burtt & Ichida 1999) and soil characteristics (Lucas et al. 2003b). 
As bacterial communities differ between habitats depending on soil parameters, it 
has been suggested that the structure of bacterial assemblages in plumage is 
habitat dependent, and that this might result in differences even between 
individuals of the same bird species (Burtt & Ichida 1999, 2004, Bisson et al. 
2007). On the other hand, as characteristics of habitat might determine the 
exposure of birds to a particular set of bacteria, the evolution of habitat-specific 
defense mechanisms might be promoted (Ruiz-Rodriguez et al. 2009). Habitat 
differences and feeding behavior in combination with specific defense 
mechanisms against feather-degrading bacteria might also result in different 
bacterial loads on different body parts (Burtt & Ichida 1999). However, there is 
shortage of published evidence concerning the habitat-dependent fitness 
consequences of feather degrading bacteria. Similarly, only a few studies have 
described seasonal changes in plumage bacteria assemblages (Burtt & Ichida 
1999), e.g. during the pre-breeding and breeding periods (Bisson et al. 2009). 

To summarize the state of current knowledge, it appears fair to conclude that 
while many valuable studies have been conducted (Table 1), there remains a 
shortage of information about many aspects of feather bacteria ecology. The 
largest gaps in our knowledge are in understanding how plumage bacterial 
assemblages are related to a bird’s sex, body condition and breeding effort, as 
well as to habitat and season. Such knowledge is crucial for planning experi-
ments to determine and understand the causality of previously reported relation-
ships: whether and how feather-bacteria influence a bird’s body condition, 
breeding success and survival. In order to generalize current findings, more 
comparable data from different study systems and bird species are required.  
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Table 1. Previously described relationships between ecological and life-history traits 
and feather-degrading (FDB) and other plumage-inhabiting bacteria in birds. 
 

Source of 
variation 

Studied bacterial 
parameter 

Effect direction Reference 

Inter-individual differences 

Sex FDB abundance various effects Gunderson et al. J. Avian Biol. 2009 

FDB and/or total 
bacterial 
abundance 

females > males 
Lucas et al. Mol. Ecol. 2005; Møller 
et al. Fun. Ecol. 2009; Czirjak et al. 
Microb. Ecol. 2010 

Brood size
Total bacterial 
abundance 

positive 
correlation 

Lucas et al. Mol. Ecol. 2006 

FDB diversity 
positive 
correlation 

Lucas et al. Mol. Ecol. 2005 

Total bacterial 
diversity 

effect on FDB 
assemblage 
structure 

Lucas et al. Mol. Ecol. 2005 

Body mass FDB abundance various effects Gunderson et al. J. Avian Biol. 2009 

Preening gland 
size

FDB abundance 
positive 
correlation 

Møller et al. Fun. Ecol. 2009 

Intra-individual differences 
 

Body parts FDB abundance venter > dorsum Burtt & Ichida Auk 1999 

Feather regions
Total bacterial 
abundance 

distal > proximal Muza et al. Wilson Bull. 2000 

Feather color
Feather resistance 
to FDB  

no color effect Mahler et al. Ibis 2010 

Feather resistance 
to FDB  

black > white 

Goldstein et al. Auk 2004; 
Gunderson et al. J. Avian Biol. 2008; 
Ruiz-de-Castaneda et al. Biol. J. 
Linn. Soc. 2012 

Feather resistance 
to FDB  

light > dark Grande et al. Ardeola 2004 

 

FDB abundance color effect 
Gunderson et al. J. Avian Biol. 2009; 
Burtt et al. Biol. Lett. 2011 

Feather hue FDB abundance 
negative 
correlation 

Shawkey et al. Naturwissenschaften 
2008 

Feather chroma FDB abundance 
positive 
correlation 

Shawkey et al. Am. Nat. 2007 
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Table 1 (Continued). Previously described relationships between ecological and life-
history traits and feather-degrading (FDB) and other plumage-inhabiting bacteria in 
birds. 
 

Source of 
variation 

Studied bacterial 
parameter 

Effect direction Reference 

Behavioral activities  

Anting 

Total bacterial 
abundance 

no effect Revis & Waller Auk 2004 

Molt 
Total bacterial 
abundance 

no effect 
Giraudeau et al. J. Avian Biol. 
2010 

Preening FDB abundance 
negative effect on 
FDB growth 

Shawkey et al. J. Avian Biol. 
2003 

Foraging habit FDB abundance 
ground feeding > 
canopy birds 

Burtt & Ichida Auk 1999 

Migration 
Total bacterial 
diversity 

migratory > 
sedentary 

Bisson et al. Microb. Ecol. 2009 

Environmental variables 

Sunlight 
intensity 

Total bacterial 
abundance 

negative correlation
Saranathan & Burtt Wilson 
Journal of Ornithology 2007 

Habitat FDB diversity various effects Bisson et al. Microb. Ecol. 2007 

 FDB abundance 
salt marsh > 
freshwater marsh 

Peele et al. Auk 2009 

 FDB activity humid > arid Burtt & Ichida Condor 2004 

Season FDB abundance winter > summer Burtt & Ichida Auk 1999 

Other Factors    

Breeding pair 
FDB and/or total 
bacterial abundance

intrapair correlation
Lucas et al. Mol. Ecol. 2005; 
Gunderson et al. J. Avian Biol. 
2009 

Population 
differences 

FDB and total 
bacterial abundance

positive correlation 
with breeding 
colony size 

Møller et al. Fun. Ecol. 2009; 
Czirjak et al. Microb. Ecol. 2010 

Species 
differences 

Total bacterial 
diversity 

various effects Shawkey et al. Waterbirds 2006 

Antibacterial 
substances (AS) 

in preening oil 

FDB abundance 
and keratinolysis 

AS inhibits FDB 
and keratinolysis, 
produced by 
symbiotic bacteria 

Martin-Platero et al. Appl. 
Environ. Microbiol. 2006; 
Martin-Vivaldi et al. J. Avian 
Biol. 2009; Ruiz-Rodriguez et al. 
J. Exp. Biol. 2009; Martin-
Vivaldi et al. Proc. Roy. Soc. 
2010 

Captivity FDB activity no effect Cristol et al. Auk 2005 
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The general aim of my thesis was to explore the extent, pattern and correlates of 
natural variation in numbers and species richness of bacterial assemblages 
inhabiting the plumage of two co-occurring cavity-breeding passerines, Great 
Tits (Parus major) and Pied Flycatchers (Ficedula hypoleuca), which share 
habitat and nesting site requirements, but differ markedly in certain other life-
history traits. Specifically, I studied the following questions: 

(i) Do plumage bacterial assemblages differ (both in terms of density and 
species richness) between these two bird species breeding in the same area and 
using the same habitats and nest sites? Similar bacterial patterns in comparable 
bird species would suggest that the factors shaping bacterial communities (e.g., 
sex, habitat, season, parental effort etc.) act in similar ways in different bird 
species. On the other hand, inter-specific differences would indicate that some 
bacterial characteristics are species-specific; 

(ii) Do plumage bacterial assemblages differ between body regions in the 
studied bird species? I expected that more bacteria would be recorded on the 
ventral than the dorsal regions, because the ventral part usually comes into 
greater contact with potential contamination sources, including the ground 
(Burtt & Ichida 1999). I also expected intra-individual differences in plumage 
bacterial load between different body parts to be consistent through time; 

(iii) Do plumage bacterial assemblages differ between habitats? I expected 
that bacterial load would be higher in more heterogeneous (e.g., deciduous 
forest) than more homogeneous habitats (e.g., coniferous forest); 

(iv) Do plumage bacterial assemblages vary through the breeding season? I 
expected bacterial load to increase during the breeding season due to the 
seasonal increase in air temperature (Burtt & Ichida 1999, Peele et al. 2009), the 
increasing time of exposure to contamination sources, and potentially due to the 
cumulative effects of reproductive effort on individual condition (Lucas et al. 
2005); 

(v) Do plumage bacterial assemblages vary between years? I expected that 
different climatic conditions in different years would influence bacterial 
abundance to some extent. At the same time, if bacterial abundance reflects 
individual quality (e.g., resistance to bacterial infestation), consistent 
differences between individuals might be expected despite annual variability.  

(vi) Do plumage bacterial assemblages differ between sexes? I expected 
females to harbor relatively higher loads of bacteria on their plumage than 
males, because of the more diverse reproductive activities undertaken by 
females (Lucas et al. 2005); 

(vii) Are plumage bacterial assemblages related to parental body condition and 
reproductive output? I expected both relationships to be negative, due to possible 
negative influence that plumage bacteria may exert on host (see above); 

(viii) Are bacterial assemblages related to plumage coloration? I expected 
high bacterial load to be associated with less bright/colorful plumage, because 
bacteria may damage feather structure (Shawkey et al. 2007, Gunderson et al. 
2009, Shawkey et al. 2009a, Ruiz-de-Castaneda et al. 2012). 
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2. MATERIAL AND METHODS 

2.1. Study system 

The Great Tit (Parus major) is a small (18–19 g) insectivorous passerine, which 
is common throughout the palearctic region (Cramp & Perrins 1993). Great Tits 
mainly forage in the tree canopy during the breeding period, feeding mostly on 
Lepidoptera and sawfly larvae and spiders (Cramp & Perrins 1993, Gosler 
1993). The species is only partly migratory in the study region (Vilbaste 1994), 
and if it migrates, then it does not usually travel very long distances. Many 
individuals spend the winter in the vicinity of their breeding area, usually close 
to human settlements (Perrins 1979, Gosler 1993, Vilbaste 1994). Great Tits 
inhabit various types of woodland, but prefer deciduous forests for breeding 
(Mänd et al. 2005). The species is a facultative double brooder, and in the study 
area 40–70% of females lay a second clutch during the breeding season (Mägi 
& Mänd 2004). In the study area, nest building starts at the end of April. The 
first breeding period lasts approximately from the end of April to the middle of 
June, while the second breeding period lasts from the end of June to the end of 
July. First clutches usually contain 9–12 eggs (Hõrak et al. 1995), while second 
clutches are generally smaller (Mägi & Mänd 2004). 
 The Pied Flycatcher (Ficedula hypoleuca) is a small (12–13 g) insectivorous 
migratory passerine, that occurs throughout much of northern and eastern 
Europe (Lundberg & Alatalo 1992). Pied Flycatcher diet consists of various 
arthropods, and birds forage both in trees and on the ground (Lundberg & 
Alatalo 1992). Pied Flycathers share the same habitats as Great Tits. Unlike 
Great Tits however, Pied Flycatchers do not lay two clutches. In the study area 
Flycatchers start to breed at least two weeks later than Great Tits, with breeding 
lasting from the end of May to the end of June. Pied Flycatcher clutches 
normally contain 6–7 eggs. 
 Besides sharing habitat preferences, both species breed in tree-holes and will 
also readily accept nest-boxes. Both species are also short-lived, with more than 
half of individuals breeding only once (Perrins 1979, Lundberg & Alatalo 
1992). Hence, there are many similarities in the ecology of the studied species, 
but also several differences (see above).  
 All field studies were conducted in northern Europe, near Kilingi-Nõmme 
(58o 7’N, 25o 5’E), SW Estonia, in 2007 (only Great Tit) and 2008 (both 
species). The study area covers approximately 50 km2 and contains a mosaic of 
two forest types – coniferous and deciduous (Figure 1). 

Birds bred in wooden nest boxes with a cavity of 11 × 11 × 30 cm and an 
entrance diameter of 3.5 – 4.0 cm. Nest boxes were mounted on tree trunks at a 
height of 1.5 – 2.0 m and were distributed in both (coniferous and deciduous) 
habitats. The distance between neighboring nest boxes was 50–60 m. Nest 
boxes were cleaned to remove old nest material before the beginning of the 
breeding season. 
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Figure 1. Schematic map of the study area. 
 

2.2. Collecting field data and samples 

All nest boxes were checked to record the laying date of the first egg, the clutch 
size and the hatching dates of both the first and second broods (in Great Tits). 
These two brood categories were clearly distinguishable since there is no 
overlap between the laying dates of the first and second clutches. Second 
broods were also confirmed by ringing data, as at least one adult from each 
breeding pair had already been captured in a particular year (see below). The 
number of fledglings per nest was recorded. Adults were captured using 
automatic traps at their nests during the second half of the nestling period. In 
2007 (but not in 2008), female Great Tits were also captured during the pre-
laying (nest-building) stage (at night when roosting in nest boxes, see paper IV 
for details). Male Great Tits were more distrustful of the traps, compared with 
females; therefore, the male sample size was much smaller and unequally 
distributed between breeding attempts. In the case of Pied Flycatchers, there 
was no significant difference between sexes in terms of trapping efficiency. 
Trapped adults were individually marked with numbered metal rings. Birds 
were weighed with a Pesola spring balance to a precision of 0.1 g, and tarsus 
measurements taken to the nearest 0.1 mm and wing length to the nearest 1 mm 
using digital callipers. 
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A fresh pair of examination gloves was used each time a new bird was 
handled. Within 30 sec after capture, about 5 ventral feathers were plucked 
from the right side of each bird’s chest, using forceps cleaned in 96% ethanol, 
and placed in dry clean disposable microtubes to assess the number of bacteria 
on feathers. In 2008, but not in 2007, the same number of dorsal feathers (from 
the center of the back) was also collected from Great Tits. Feathers from the 
different body regions were placed in separate tubes. In both years, another 
sample of five feathers (from the same body regions) was collected from each 
bird to determine the species richness of feather-degrading bacterial 
assemblages. See papers I, III and IV for details. 
 

2.3. Density measures of bacteria on feathers 

Two distinguishable ecological types of bacteria occur in bird plumages: free-
living and attached bacteria. Studies of bacterial communities in soil, water and 
sediment have demonstrated that free-living bacteria are usually more labile, 
while attachment provides a more stable environment and protection against 
grazing, chemical antibiotics or physical stress (see Ozawa & Yamaguchi 1986, 
Lucas et al. 2003a, Selje & Simon 2003 for references).  

Free-living bacteria were washed out from the feathers using PBS 
(phosphate buffered saline) solution. To remove attached bacteria, feathers were 
sonicated in detergent solution in order to break down biofilms (Lucas et al. 
2003a). Free-living and attached bacteria samples were stored and analyzed 
separately. Direct counts were performed with a flow cytometry machine (BD 
LSR II) that was calibrated to detect only bacterium sized tagged particles. 
DNA-binding dye SYBR Green was used for tagging. The number of feathers 
in each sample was recorded in order to calculate bacterial density per feather 
(as Lucas et al. 2005). See paper I for details. 
 

2.4. Feather-degrading bacterial species richness 

At the laboratory, feather-degrading bacterial assemblages were enriched 
(following Lucas et al. 2005). The ribosomal intergenic spacer analysis (RISA) 
method was used to analyze the structure of feather-degrading assemblages 
obtained in the enrichment cultures. Each RISA band is assumed to correspond 
to one bacterial species and is referred to as a phylotype (following Muyzer et 
al. 1993, Stach et al. 2003, to point out that RISA bands are anonymous). Thus, 
the band profile reflects bacterial assemblage structure, while the number of 
bands corresponds to the bacterial assemblage richness (Ranjard et al. 2000). In 
this thesis, term phylotype is used for referring RISA results, otherwise term 
species is used. 

This method is fairly coarse (and therefore easily applicable and cheap) and 
does not allow ecological characteristics (free-living or attached) to be assigned 
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to particular bacterial phylotypes. Also, due to the specific limitations of RISA 
analysis, a certain portion of true species richness might be overlooked. 
However, general estimates of diversity should still be reliable (Ranjard et al. 
2000). See paper I for details. 
 

2.5. Feather color measures 

Three additional feathers were plucked from each Great Tit individual from a 
standard position in the yellow breast plumage. Breast color was characterized 
by measuring chroma values using a spectrophotometer (Ocean Optics 
USB2000 with Ocean Optics DH2000 lamp). Chroma corresponds to color 
purity on a scale from 0 to 100, with 100 representing pure color. Chroma was 
measured in the visible range of 400–700 nm (Senar et al. 2008; Broggi and 
Senar 2009). The three feathers were put on top of each other and three 
measurements were obtained from each individual. The mean was used in 
analyses. Within-individual repeatability of the three chroma measurements was 
high (r = 0.86; according to Lessells & Boag 1987). See paper V for details. 
 

2.6. Statistical analysis 

Statistical analysis was performed using program Statistica (Statsoft, Tulsa, 
Oklahoma). Bacterial density estimates were log-transformed prior to analysis 
to satisfy the assumption of normality. General linear models (GLMs) were 
used to model variation in bacterial density. Akaike information criterion (AIC) 
was used for model selection in study II, otherwise predictors were removed 
from the initial models using a backward stepwise procedure, when non-
significant (P > 0.05). See original papers for more details. 
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3. RESULTS 

3.1. Species differences 

The density of attached bacteria on feathers was lower in Pied Flycatchers than 
Great Tits (II). Free-living bacterial density and the mean number of feather-
degrading bacterial phylotypes per bird did not differ significantly between the 
two bird species. In total, 16 bacterial phylotypes were detected from 110 Great 
Tit individuals and 12 bacterial phylotypes were found from 42 Pied 
Flycatchers (II). 
 

3.2. The effect of body topography 

In Great Tits, the densities of free-living, but not attached, bacteria on dorsal and 
ventral feathers were positively correlated. Correlation between the richness of 
feather-degrading bacterial communities in these body areas was also positive, 
but marginally non-significant (III). At the same time, the densities of both 
attached and free-living bacteria were significantly higher on dorsal than on 
ventral feathers in Great Tits, while the richness of feather-degrading bacterial 
communities on dorsal and ventral feathers did not differ significantly (III). 
 

3.3. Habitat differences 

In Great Tits, the densities of both free-living and attached bacteria were 
significantly higher in individuals breeding in deciduous habitat compared with 
those breeding in coniferous habitat (I, IV). A habitat difference in the number 
of phylotypes was only apparent during the nest-building stage – individuals 
carried fewer phylotypes in deciduous than in coniferous habitat (I). By 
contrast, no significant effect of habitat type on the plumage bacterial 
community was detected in the Pied Flycatcher (II). 
 

3.4. Seasonal and annual changes 

The density of both free-living and attached bacteria on Great Tit feathers was 
higher during the nest-building period than during either the first-brood or 
second-brood stage (I). Moreover, the precise stage of nest-building also had a 
significant effect on the density of attached bacteria on Great Tit feathers, with 
the density tending to increase towards the final stage of nest-building (IV). The 
decline in bacterial density between the nest-building stage and the first brood 
was confirmed by repeated measures analysis of the same individuals in the 
case of attached but not free-living bacteria (I). Later in the season, the density 
of attached bacteria increased significantly from the first to second brood (I). 
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The density of attached bacteria on feathers was generally higher in 2008 
than in 2007 (I, III). In six females, captured in the two consecutive years, there 
was a significant positive correlation between the densities of attached bacteria 
in the different years (III). 
 

3.5. Sex differences 

Males of both Great Tits and Pied Flycatchers combined had fewer attached 
bacteria on their plumage than females (II).The difference remained when data 
from Pied Flycatchers were analyzed separately, and males also had fewer 
bacterial phylotypes on their feathers than females on average (II). Male Great 
Tits, however, supported on average more bacterial phylotypes than females, 
and the difference was more pronounced during second broods than during first 
broods (I). No significant sex differences were found in the density of free-
living bacteria. Both free-living and attached bacterial densities were correlated 
within breeding pair members. 
 

3.6. Bacteria, female condition and breeding output 

In Great Tits, a positive relationship between free-living bacterial density and 
female mass was found during both the first and second breeding periods (I), 
while the density of attached bacteria was negatively related to female mass 
only during the first breeding period (I). No significant effect of body mass was 
found on feather-degrading bacterial phylotypic richness. In Pied Flycatchers, 
there was a significant positive correlation between the density of attached 
bacteria and the tarsus length of adult birds, and a negative correlation between 
the number of bacterial phylotypes and body mass (II). No significant effect of 
body mass was found on free-living bacterial density. 

There was a negative relationship between the density of attached bacteria 
and the number of fledglings in Great Tits but not in Pied Flycatchers (II). 
There was no such relationship with clutch size (II). 
 

3.7. Bacteria and plumage coloration 

In Great Tits, plumage chroma during the nestling-feeding period was 
negatively correlated with the phylotypic richness of feather-degrading bacteria, 
but not with densities of attached or free-living bacteria (V). The change in 
chroma between the pre-laying and chick-rearing periods was correlated with 
the change in attached bacterial density during same time period. This means 
that in individuals whose attached bacterial densities increased over time, 
chroma simultaneously decreased (V). 
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4. DISCUSSION 

4.1. Species differences 

The total number of bacterial phylotypes observed in Great Tits (18 phylotypes 
from 290 individuals, I) and Pied Flycatchers (12 phylotypes from 42 
individuals, II) was of approximately the same magnitude as recorded in other 
studied wild bird species: in House Finches Carpodacus mexicanus (13 
phylotypes from 29 individuals) and in Eastern Bluebirds Sialia sialis (15 
phylotypes from 4 individuals) (Shawkey et al. 2003a, Shawkey et al. 2005). 
However, the mean richness of bacterial phylotypes per individual (the sample 
consisting of five ventral feathers) was relatively low both in Great Tits (2.3 ± 
1.6, I) and Pied Flycatchers (2.0 ± 1.0, II), compared with that recorded from 
European Starlings Sturnus vulgaris (7 ± 3) using exactly the same method 
(Lucas et al. 2005). Given the relatively high abundance of feather-degrading 
bacteria in soil (Lucas et al. 2003b), differences in foraging behavior could be a 
possible explanation for such interspecific differences in bacterial diversity. 
Great Tits and Pied Flycatchers mainly forage in the canopy, while starlings are 
mainly ground-foragers. Similarly, other authors have found feather-degrading 
bacteria to be more abundant in the plumage of ground-feeding birds compared 
with canopy birds (Burtt & Ichida 1999). However, one must consider that 
climatic and local soil or habitat parameters might also influence microbial 
communities, making it more difficult to compare different studies. 

While the mean richness of bacterial phylotypes did not differ between the 
studied species, there was a significant difference in the density of attached 
bacteria: Pied Flycatchers harbored significantly fewer bacteria than Great Tits. 
However, on average Pied Flycatchers spend more time foraging on the ground 
than Great Tits (Haartman 1954, Alatalo & Alatalo 1979). Hence, the 
explanation of interspecific differences based on different foraging strategies 
does not seem to apply in a comparison of these two species. A possible 
alternative explanation is that Great Tit nests are much larger than those of Pied 
Flycatchers, contain more materials collected from the ground, and probably 
also harbor more feather-degrading bacteria. Also, it has previously been noted 
that migratory birds generally carry fewer bacteria on their feathers than 
sedentary birds (Bisson et al. 2009). The finding that the Pied Flycatcher, which 
is a long-distant migrant, has a lower average bacterial load than the mostly 
sedentary Great Tit, corresponds well with this general pattern. A third possible 
reason for the observed inter-specific differences in bacterial load is that the 
plumage coloration of these two species is very different, and feather color may 
influence the associated bacterial assemblage (Goldstein et al. 2004, Gunderson 
et al. 2008, Peralta-Sanchez et al. 2010, Peralta-Sanchez et al. 2011, see also 
Ruiz-de-Castaneda et al. 2012). However, the reasons underlying bacterial 
community differences seem to go beyond coloration, because Goodenough and 
Stallwood (2010) recently found that bacterial loads in nests differ significantly 
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even between bird species with as close biology and plumage coloration as Blue 
and Great Tits (Cyanistes caeruleus et Parus major), breeding in the same area. 

Although it is impossible to draw firm conclusions based on a comparison of 
two species or from the scarce existing literature, the results presented here 
clearly indicate that bird species living in the same area and using the same 
habitats and nest sites may still harbor a significantly different bacterial load on 
their feathers. These findings are therefore consistent with the conclusion of 
Goodenough and Stallwood (2010) that despite substantial intraspecific 
variation in bacterial microflora in birds, there are significant interspecific 
differences even when host species are closely related, ecologically similar, 
sympatric, and construct very similar nests. Hence, plumage bacterial 
communities are not solely determined by the soil and habitat characteristics; 
certain species-specific factors are also important. 
 

4.2. The effect of body topography 

A significant correlation was found between the densities of free-living bacteria 
on the ventral and dorsal feathers of individual Great Tits (III). This matches 
the finding of Gunderson et al. (2009) who found a strong correlation between 
bacterial intensities on different body parts of the same Eastern Bluebird 
individuals. Such results are unsurprising, given that bacterial loads are known 
to be correlated even between the different parents within breeding pairs (Lucas 
et al. 2005, Gunderson et al. 2009, I). The most plausible explanation for this 
phenomenon is that pair-mates infect each other with bacteria via their common 
nest and brood (I). Hence, if bacteria can easily pass between frequently 
interacting individuals, it seems reasonable to expect that they can easily spread 
from one body region to another. It is noteworthy that the correlation between 
the densities of attached bacteria in different body regions was weaker than the 
relationship between free-living bacterial densities and was not significant (III). 
This corresponds to the finding (I) that correlation in the levels of 
contamination between members of a breeding pair is also much weaker for 
attached than free-living bacteria. Thus it seems that attached bacteria do not 
have the same propensity to spread as free-living bacteria. 

A rather unexpected result of the study (III) was that densities of feather 
bacteria associated with Great Tits were higher on the dorsal than the ventral 
plumage. This is at odds with the prediction made in the Introduction. 
Significant body topographic variation in feather bacterial loads in birds has 
been also detected by earlier studies (Burtt & Ichida 1999, Bisson et al. 2007). 
However, the only study (Burtt & Ichida 1999) that examined the direction of 
this difference in several bird species (but not in Great Tits) reported that 
bacterial loads tend to be higher on ventral than dorsal feathers. Burtt and 
Ichida’s (1999) result is somewhat more intuitive than that reported here from 
Great Tits, as the main source of bacteria is presumed to be the soil, and ventral 



 20

feathers certainly come into close contact with the ground and other 
contaminated substrates. Moreover, the fact that sunlight inhibits bacterial 
growth (Saranathan & Burtt 2007) should also decrease dorsal bacterial 
densities. However, the yellow chest in Great Tits is probably used to signal to 
conspecifics (Hõrak et al. 2001), and dirt accumulation can reduce plumage 
coloration (Surmacki & Nowakowski 2007). It has been shown that ornamented 
bird species devote more time to sanitation behaviours compared with non-
ornamented species (Walther & Clayton 2005). Consequently, it is possible that 
Great Tits preen their chests more carefully than their backs. It is also relevant 
to note that Burtt and Ichida (1999) only examined the presence or absence of 
feather-degrading bacilli (mainly Bacillus licheniformis), which represent only 
a fraction of the entire diversity of feather bacteria. In contrast, non-selective 
methods were used in study III to estimate the total abundance of all types of 
feather-inhabiting bacteria. Thus, it is possible that the difference between 
ventral and dorsal body parts described by Burtt and Ichida (1999) may not hold 
universally for all ecological types of bacteria, and that other factors besides 
contact with the ground may be responsible for body topographic variation in 
the abundance of feather bacteria. The results described here also deliver a 
methodological message of great importance: in order to ensure comparability, 
the collection of feather samples must be standardized; otherwise the uneven 
distribution of bacteria in plumage could generate highly biased results. 
 

4.3. Habitat differences 

Habitat-related differences in bacterial density (I, IV) and phylotypic richness 
(I) in Great Tit plumage showed contrasting patterns: while the number of 
phylotypes per bird was higher in coniferous habitat, bacterial densities were 
higher in deciduous habitat. Hence, the habitat-related pattern of variation in 
feather bacterial densities conforms to the prediction made in the Introduction 
that birds inhabiting more diverse habitats harbor more bacteria on their 
feathers. However, habitat-related differences in the phylotypic richness of 
bacteria did not conform to this pattern. 

A negative relationship between species diversity and abundance variables 
has previously been described for plant communities at relatively high 
productivity levels (Adams 2009). In bacterial communities, such a relationship 
can most plausibly be explained by interspecific antagonism and dominance. 
For example, many bacterial species produce antibacterial chemicals that 
suppress the growth of other bacteria (Riley & Wertz 2002, Peralta-Sanchez et 
al. 2010). When fast-breeding (or fast-growing) generalist species (dominants) 
are present in a community, they might depress overall bacterial diversity 
(Martin-Platero et al. 2006, Soler et al. 2008, Peralta-Sanchez et al. 2010). 
Although deciduous forests are generally much more diverse habitats than 
managed conifers and contain more diverse microhabitats in which birds might 
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become contaminated with bacteria, rapid infestation with dominant bacteria 
may inhibit colonization by other bacterial species.  

The results of the study (I) indicate that the structure of bacterial commu-
nities may vary significantly between habitats even at small geographical 
scales. In this context it is noteworthy that the physiological condition of 
breeding Great Tits in the same study area was found to be worse in deciduous 
than in coniferous forest (Kilgas et al. 2006, 2007, Mägi et al. 2009). Hence, the 
possibility cannot be ruled out that the relatively high bacterial load associated 
with deciduous habitat may represent one of the factors contributing to the 
habitat difference in adult condition. 

No significant effect of habitat type on plumage bacterial community was 
detected in the Pied Flycatcher (II). However, this may be a result of the 
significantly lower sample sizes collected for this species, compared with Great 
Tits (II). 
 

4.4. Seasonal changes 

One prediction in the Introduction was that the warm and humid environment of 
the nest and a reduced preening effort due to the increased need to devote more 
time to feeding offspring would cause a seasonal increase in bacterial 
abundance on feathers. This prediction was not supported by the results of the 
study. In fact, female Great Tits supported significantly more bacteria (both 
attached and free-living) in their plumage during the nest-building period than 
during the first and second broods (I). 

Such a pre-laying peak in bacterial density may be caused by different 
mechanisms. First, it may be related to nest-building behavior, which brings 
birds into increased contact with the ground and nest materials (as suggested in 
I), while possibly leaving them little time for self-preening. Indeed, Great Tits 
spend considerable time on the ground during the nest-building phase to collect 
moss, dry grass, hair, wool etc. (Cramp & Perrins 1993). This explanation 
assumes that the density of bacteria in plumage increases rapidly during the 
short period of nest building. However, an alternative explanation is derived 
from the fact that Great Tits roost in cavities (nest boxes in our study area) 
during the winter. It is therefore possible that damp nest-boxes containing old 
nest material harbor a diverse bacterial community and leave tits highly infested 
in the spring (I). 

The results of the study (IV) provide support to the first explanation. The 
pre-laying peak in bacterial density appears to be related to nest-building 
behavior: the densities of attached feather bacteria in female Great Tits 
increased during a fairly short period between nest initiation and nest 
completion. A similar trend, though not statistically significant, was found in 
the case of free-living bacteria. Both of these trends appeared to be very similar 
within both habitat types. It is noteworthy that the number of free-living 
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bacteria tended to increase when the nests were only ‘half ready’ – just after the 
first animal hairs appeared in the nests. However, the number of attached 
bacteria tended to increase once nests were completed (IV). This appears to be a 
logical result, as attached bacteria presumably take some time to become 
attached.  

Thus these results indicate that the high pre-laying density of bacteria in the 
plumages of Great Tits is not a relic from an earlier period, but appears to be 
related to nest-building activity. Besides the reasons already listed above, it is 
perhaps noteworthy that the start of egg-laying in tits is often induced by a 
sudden spell of warm weather (pers. obs.), and birds may need to hurry with 
nest-building to such a degree that they have to significantly reduce self-
preening during that time. Thus, increase of plumage bacterial load during the 
short period of nest-building may be one mechanism mediating the costs of 
nest-building on individuals. Recent studies have shown that nest building in 
Great Tits and Blue Tits is indeed an energy-demanding endeavor, the outcome 
of which may be related to individual quality (Tomás et al. 2006, Broggi & 
Senar 2009). Bacterial abundance in the plumage may decline in subsequent 
breeding stages due to regular preening activities and reduced contact with the 
soil.  

These results indicate that the density of bacteria in plumage is variable and 
can fluctuate rapidly during the breeding season. This is also the first study to 
demonstrate that bacterial load in plumage increases significantly throughout 
the nest-building process in a free-living arboreal bird. Previously, fast changes 
in bacterial densities within a single breeding phase have been reported from 
chick-rearing European Starlings, where free-living, but not attached, bacterial 
densities increased in response to brood-size manipulation (Lucas et al. 2005). 

However, more consistently with the initial prediction, there was also an 
increase in attached bacterial load between the first and second breeding 
attempts in the Great Tit (I). This can most plausibly be explained by the 
extended exposure of plumage to various kinds of microbes, while favorable 
climatic conditions prevailing in midsummer during the second broods might 
also enhance bacterial growth and density. Moreover, bacterial density may 
increase during the season as a result of the cumulative negative effects of 
reproductive effort on individual condition and preening activities during 
multiple breeding attempts. 
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4.5. Annual variation 

The density of attached bacteria was significantly higher in 2008 than in 2007 
(I). The most plausible reason for the difference between years was the 
considerably higher mean ambient temperature and level of precipitation in the 
early spring of 2008 (according to the Estonian Meteorological and 
Hydrological Institute), which probably favored bacterial growth (Burtt & 
Ichida 1999, 2004, Peele et al. 2009). Hence, the results of the study (III) 
support the predictions made in the Introduction. 

A strong correlation was found between attached bacterial densities within 
the same individual females in two successive years (III). These results indicate 
that knowing the bacterial density on feathers of an individual in one particular 
year does not allow the absolute bacterial density on its feathers in the next year 
to be estimated. Rather, it allows the rank or magnitude of bacterial load 
compared with other individuals to be predicted, because this appears to remain 
fairly constant between years. Hence, bacterial loads of individuals are not 
merely the result of unpredictable contingencies, but reflect something about 
individual birds that remains constant over time. Unfortunately, owing to the 
small sample sizes, these data do not allow us to determine if this is related to 
individual differences in body condition (Clayton 1999), preening behavior 
(Walther & Clayton 2005), uropygial oil production or its composition (Martin-
Vivaldi et al. 2009, Møller et al. 2009), properties of nesting areas, or to some 
other factor.  
 

4.6. Sex differences 

Comparing the different Great Tit parents within individual breeding pairs 
showed that bacterial density was correlated within-pair, but females had a 
tendency on average to support fewer bacterial phylotypes than males (I). As 
within-pair differences in parental physical activity are expected to be smaller 
than differences between pairs (Verhulst & Tinbergen 1997), and there is also 
an expected trade-off between parental provisioning effort and self-preening 
behavior, one would expect within-pair bacterial densities to be correlated (see 
also Lucas et al. 2005). An alternative explanation could be that breeding 
partners share the same breeding territory, are thus exposed to similar bacterial 
assemblages and may even infect each other with bacteria via their common 
nest and brood (I). Nonetheless, females of both studied species carried more 
attached bacteria on their feathers than males (II). In Pied Flycatchers, but not 
in Great Tits, females also carried more bacterial phylotypes per individual than 
males (II). Similarly, a higher bacterial load in females, compared with males, 
was found in European Starlings (Lucas et al. 2005) and Barn Swallows 
Hirundo rustica (Møller et al. 2009, Czirjak et al. 2010). This sex difference is 
again predictable, because females carry out more diverse activities during the 
different stages of reproduction (see Introduction). Furthermore, female Great 
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Tits and Pied Flycatchers in this study area roost in nest boxes, while males 
roost in the tree canopy. Therefore, females may come into more frequent 
contact with bacteria-contaminated nest material than males do. Secondly, 
given that on average male parents invest less effort in their broods than 
females do (Cramp & Perrins 1993, Verhulst & Tinbergen 1997, Sanz et al. 
2000, Sisask et al. 2010), they can devote more time to self-preening. 

 However, the reasons for significant differences between partners in 
bacterial phylotypic richness are less clear. Unlike Pied Flycatchers, the number 
of bacterial phylotypes in the plumage of Great Tits was higher in males than in 
females (I). It seems counterintuitive that male Great Tits support more 
bacterial phylotypes than females (I), for the reasons listed above. However, it 
may be that because female Great Tits come into greater contact with soil and 
bacteria than males do, the dominant bacterial species suppress bacterial 
diversity in their plumage to a greater extent. While males can devote more time 
to self-preening than females, the application of preen waxes may inhibit the 
growth and density of some bacteria on feathers, but may not greatly reduce the 
species diversity of the microbial assemblages (Shawkey et al. 2003a). It is also 
noteworthy that the difference between the sexes in the mean phylotypic 
richness of bacteria was larger during second broods than during first broods 
(I). This was presumably related either to the higher ambient temperature 
during the second broods promoting bacterial development, or to the increased 
time available for preening in males due to the relatively small size of second 
broods. The latter is also supported by the finding that males indeed invest 
relatively less into smaller broods (Verhulst & Tinbergen 1997). However, it 
then remains unclear why a similar sex × breeding stage interaction was not 
revealed in bacterial density. 

Together with the few results available from other studies, the results 
described here suggest that the abundance of feather bacteria in different 
passerines tends to be generally higher in females than in males. However, as 
repeatedly shown in this thesis, a greater density of bacteria on feathers does not 
necessarily also mean a higher number of bacterial phylotypes. 
 

4.7. Bacteria, female condition and  
breeding parameters 

As expected, a significant negative correlation was found between the 
phylotypic richness of plumage bacteria and adult body mass in Pied 
Flycatchers (II). There was also a negative correlation between attached 
bacterial density and female mass during the first broods in Great Tits (I). 
However, free-living bacterial density in the latter species was positively 
correlated with female mass (I). The first two findings are thus consistent with 
the assumption of less contaminated birds also being high-quality individuals 
that exhibit good body condition (see Introduction). Several studies have 
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reported similar negative associations between parameters of plumage bacterial 
assemblages and adult body condition in other species. For example, Gunderson 
et al. (2009) reported a negative correlation between plumage bacteria intensity 
and body condition of females in Eastern Bluebirds. 

However, there is some inconsistency between the results of different 
correlative studies. For example, in the same study by Gunderson and 
colleagues (2009), the body condition of males was in fact positively correlated 
with bacteria intensity. The counterintuitive positive correlation between free-
living bacteria and female mass in Great Tits (I) may indicate that female 
breeders with high body mass (which are usually high-quality individuals; e.g., 
Merilä & Wiggins 1997) spend more time and energy searching for calcium-
rich snail shells for their eggs and food for their nestlings (Tinbergen & Dietz 
1994), compared with poor-quality individuals, and are therefore more 
frequently in contact with possible sources of micro-organisms. Thus, although 
one certainly cannot draw general conclusions from a small number of 
correlative studies, the available evidence suggests that the negative relationship 
between bacteria and body condition may not be universal, and its precise 
manifestation may depend on various factors, including species-specific factors. 

In Great Tits, a negative correlation also emerged between the density of 
attached bacteria in the plumage of parents and the number of fledged young (II). 
There was no such relationship with clutch size, suggesting that the negative 
relationship reflects processes occurring during the incubation and/or fledging 
stage. It may be that birds with high bacterial load are low-quality individuals that 
did not adjust their brood size to reflect their own reproductive potential and the 
availability of resources (e.g. Slagsvold & Lifjeld 1990); and such individuals are 
therefore unable to care adequately for all of their offspring. Indeed, the finding 
that attached bacterial density and female mass are negatively correlated in Great 
Tits (I) and other species (see discussion and references above) are all in good 
correspondence with this hypothesis. Secondly, the parents of the broods with 
high nestling mortality may have increased their parental provisioning effort in 
order to avoid starvation of their young, and therefore had less time for self-
preening. Indeed, it has been previously shown in the same study area, that poor 
growth of Great Tit nestlings is associated with higher feeding frequency by 
parents (Mägi et al. 2009). Moreover, Lucas et al. (2005) demonstrated the 
existence of a trade-off between parental effort and self maintenance 
experimentally: European Starlings with enlarged broods had more free-living 
bacteria on their feathers than birds with reduced broods. A third potential 
explanation for the negative relationship between bacterial load in adults and the 
number of fledglings is that mortality of nestlings causes an increase in the 
number of bacteria in the nest (e.g., via the decay of corpses in the nest), and that 
adult birds that are in contact with such a nest accumulate higher levels of 
contamination. However, this explanation has to be considered unlikely, because 
no association between bacterial loads of adults and mortality of nestlings was 
detected up to the time of adult sampling (I).  
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4.8. Bacteria and plumage coloration 

Feather chroma of female Great Tits tended to be negatively related to the 
phylotypic richness of feather-degrading bacteria during the chick-rearing 
period, but not during the period before egg-laying (V). At the same time, no 
associations between chroma and bacterial densities were found in either of the 
breeding stages. However, the seasonal change in attached bacterial densities 
was negatively correlated with seasonal change in chroma (V), implying that 
the increase in bacterial load was accompanied by a decrease in chroma. 

To my knowledge, this is the first study on female birds reporting 
associations between carotenoid-based coloration and plumage bacteria. The 
only previous study found that male House Finches with redder plumage had 
lower feather-degrading bacterial loads (Shawkey et al. 2009a). The chroma of 
the yellow chest plumage of female Great Tits may signal some aspect of 
individual quality (Senar et al. 2008; Broggi and Senar 2009). Previous studies 
have found that plumage chroma is more sensitive to developmental 
perturbations and body condition than hue (Shawkey et al. 2003b, Senar et al. 
2008). Chroma in Great Tits has been found to be unrelated to the carotenoid 
content of the feather, indicating that other mechanisms may be responsible for 
the variation in this trait (Senar et al. 2008). 

Due to the correlative nature of the study (V) it remains unclear whether 
plumage bacteria directly affect plumage color or if these two variables are 
correlated with each other through some other factor. For example, it has 
previously been found that in Eastern Bluebirds feather degrading bacteria can 
directly affect structural plumage coloration (Shawkey et al. 2007, Gunderson et 
al. 2009). It is thus possible that feather-degrading bacteria affect the feather 
microstructure that is also involved in generating the carotenoid-based 
coloration (Shawkey & Hill 2005). It is also possible that feather-degrading 
bacteria could damage the carotenoid structure (as suggested by McGraw & 
Hill 2004). 

Alternatively, it has been suggested that moulting may decrease the bacterial 
load on feathers (Burtt & Ichida 1999, but see Giraudeau et al. 2010). At the 
same time the chroma of new feathers may differ from old feathers reflecting 
nutritional conditions during the molt (e.g., Hill 2000). As Great Tits start 
moulting at the end of the breeding season, this process can sometimes overlap 
with the timing of late broods (e.g., Orell & Ojanen 1980). In the year when 
plumage coloration was analysed, females were captured before egg-laying, 
resulting in the desertion of initial nests (V) and presumably also in some delay 
to egg-laying in replacement nests. Therefore, the possibility cannot be 
excluded that the negative association between seasonal change in the density 
of attached bacteria and plumage color was caused by the fact that some 
individuals started moulting earlier than others and this affected both traits 
simultaneously.  
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In several species plumage coloration can also change between molts due to 
bleaching, dirt accumulation and abrasion. Such changes can also vary 
individually, so that in some birds plumage coloration increases, while in others 
it decreases or does not change with time (McGraw & Hill 2004). It is possible 
that some individuals are able to take better care of their plumage, thus affecting 
both plumage coloration and bacterial communities living on feathers. In 
conclusion, whatever the reasons may be, the results of this study showed that 
the yellow chest color in Great Tits is related to feather-degrading bacterial 
phylotypic richness and that there are parallel seasonal changes in plumage 
color and bacterial load. 
 

4.9. Conclusions 

This thesis revealed that bacterial assemblages on the feathers of breeding birds 
are correlated with many avian life-history traits: (i) bacterial load in deciduous 
habitat (which in this study area appears to be be less suitable for breeding than 
coniferous habitat judging from the physiological condition of adults and 
fledglings; Kilgas et al. 2006, 2007, Mägi et al. 2009) is higher than that in 
coniferous habitat (I); (ii) females (which carry out a greater diversity of 
activities during the breeding season) of both studied species carry more 
bacteria on their feathers than males (I, II); (iii) bacterial abundance and 
assemblage richness are correlated with bird body mass (I, II) and feather color 
intensity (V); and last but not least, (iv) a rapid increase in bacterial abundance 
occurs during the nest-building period (IV). Among other things, these findings 
suggest that a correlation is present between breeding effort and self-
maintenance. Because of the correlative nature of studies in this thesis, one 
cannot ascertain whether this is a causal trade-off or just correlation, caused or 
mediated by other factors. However, taking into account earlier findings 
reported in literature – some of which were based on experimental manipulation 
(Lucas et al. 2005) (Table 1), or provided indirect evidence that feather-
degrading bacteria might actively degrade feathers on living birds (Shawkey et 
al. 2007, Gunderson et al. 2009, Shawkey et al. 2009a) – the occurrence of such 
trade-offs seems likely. 

Nonetheless, the generality of these findings remains unclear. Between-
species and body topographic comparisons showed that certain species-specific 
factors play an important role, and that, consequently, formerly described 
patterns are unlikely to apply universally for all bird species and ecological 
types of bacteria (II, III). Further study is needed, involving more bird species 
from different regions and habitats, the use of manipulative approaches, the 
consideration of a wider range of variables, larger sample sizes, and 
consideration of bacterial species composition in samples. 
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SUMMARY 

Microorganisms have been shown to play an important role in shaping the life-
histories of animals. It has recently been suggested that feather-degrading 
bacteria influence the trade-off between parental effort and self-preening 
behavior in birds and may thus affect the individual fitness of birds. However, 
in order to design appropriate experiments to test this assumption, it is first 
necessary to collect more information on the basic parameters of these bacterial 
communities, such as patterns of natural variation in their density and 
composition, and environmental sources of infestation for birds.  

In this thesis, a complex study design was used, coupling molecular and 
microbiological techniques with field-based collection of ecological and life-
history data on two cavity-breeding passerines. The study was conducted in 
wild breeding populations of Great Tits (Parus major) and Pied Flycatchers 
(Ficedula hypoleuca) in a unique study area consisting of a mosaic of two very 
different habitat types in Estonia, northern Europe. While the species are similar 
in terms of their nest site requirements, they differ in certain other traits. 
Environmental and life-history correlates of natural variation in the abundance 
of free-living and attached bacteria and in the species diversity of feather-
degrading bacteria inhabiting bird plumage were explored. Associations of 
bacterial infestation of feathers with bird body topography, plumage coloration, 
individual condition and reproductive output was also investigated. The density 
and species richness of bacterial assemblages was measured using flow 
cytometry and ribosomal intergenic spacer analysis (RISA).  
 The density of plumage bacteria was significantly higher in Great Tits than 
in Pied Flycatchers, providing evidence that the level of bacterial contamination 
differs even between co-occurring host species that share habitat, nest site and 
general foraging preferences (paper II). 
 The densities of both types of bacteria were higher on the dorsal than on the 
ventral feathers of Great Tits. The densities of free-living, but not attached, 
bacteria on the two body regions were highly positively correlated (paper III). 
This result highlights the importance of following a standard sample collection 
methodology in order to ensure comparability of data. 
 In Great Tits, the number of bacterial phylotypes per bird was higher in 
coniferous habitat, while bacterial densities were higher in deciduous habitat 
(paper I). This demonstrates that the structure of bacterial communities may 
vary significantly between habitats even at small geographical scales. 
 This is the first study to demonstrate that the density of attached bacteria on 
feathers may increase rapidly during the nest building process, and thereafter 
decline (papers I and IV). The density of free-living bacteria exhibited a similar 
pattern. The density of bacteria in bird plumage varied significantly between 
years; however, attached bacterial densities on the same individuals in 
successive years were correlated (paper III). 
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 Bacterial species richness in Great Tits was sex dependent, with more 
diverse bacterial assemblages present on males than on females (paper I). At the 
same time, bacterial densities were higher in females than in males in both 
species (papers I and II). The latter finding supports the hypothesis that 
bacterial abundance on the plumage of the different sexes is related to the 
different activities carried out by males and females during the breeding season. 
 In Great Tits, free-living bacterial density was positively correlated with 
female mass; conversely, there was a negative correlation between attached 
bacterial density and female mass during the period of peak reproductive effort 
(paper I). In Pied Flycatchers, a negative correlation between parental body 
mass and the richness of feather-degrading bacterial phylotypes was found 
(paper II). In Great Tits, higher densities of bacteria in the plumage of parent 
birds were also associated with the production of fewer fledglings (paper II). 
These results indicate that feather-bacterial assemblages may be related to bird 
condition and reproductive effort. 
 During the chick-rearing period, feather chroma was negatively related to 
feather-degrading bacterial species richness in Great Tit females. Moreover, the 
seasonal change in the density of attached bacteria was accompanied by an 
opposite change in feather chroma (paper V). This is the first study to 
demonstrate the existence of associations between carotenoid-based coloration 
and bacterial assemblages in the plumage of female birds. 
 In conclusion, the findings contained in this thesis will supposedly improve 
our understanding of how bacterial assemblages on the feathers of breeding 
birds interact with environmental variables and host life history parameters. 
Such knowledge is crucial for future attempts to describe and understand the 
causality of such relationships. 
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SUMMARY IN ESTONIAN 

Sulestiku bakterikoosluste pesitsusaegne varieeruvus 
kahel vabaltelaval värvuliseliigil 

Mikroorganismid mängivad loomade elukäigu kujundamisel tähtsat rolli. Hiljuti 
on väidetud, et sulgilagundavad bakterid põhjustavad lõivsuhet lindude 
sigimispingutuse ja sulestiku eest hoolitsemise vahel ja võivad seega avaldada 
mõju lindude kohasusele. Selleks aga, et osata planeerida korrektseid 
eksperimente nimetatud väite kontrollimiseks, tuleb esmalt koguda rohkem 
informatsiooni sulestiku bakterikoosluste põhiparameetrite – arvukuse ja 
liigilise koosseisu – loodusliku varieeruvuse seaduspärasuste ning lindude 
bakteritega nakatumise peamiste allikate kohta. 

Käesolevas töös kasutati kompleksset uurimistöö ülesehitust, ühendades 
omavahel molekulaarsete ja mikrobioloogiliste meetodite rakendamise ja 
ulatusliku ökoloogilise ja elukäigu-andmestiku kogumise kahe suluspesitseva 
värvulise – rasvatihase (Parus major) ja must-kärbsenäpi (Ficedula 
hypoleuca) – looduslikest populatsioonidest, mis paiknevad ühisel, kahe väga 
erineva elupaiga mosaiiki sisaldaval uurimisalal. Neid liike ühendavad sarnased 
pesapaigavaliku eelistused, kuid nad erinevad teineteisest mitmete muude 
omaduste  poolest. Uuriti lindude sulgedel elavate vabaltelavate ja kinnitunud 
bakterite arvukuse ja liigilise mitmekesisuse seoseid elukeskkonna omaduste ja 
elukäigu parameetritega. Samuti pöörati tähelepanu sulebakterite koosluste 
omaduste seostele linnu kehapiirkonna, sulestiku värvuse, isendi konditsiooni ja 
sigimisedukusega. Bakterite asustustiheduse ja bakterikoosluste liigilise mitme-
kesisuse määramiseks kasutati vastavalt läbivoolutsütomeetriat ja ribosomaalse 
geenidevahelise speisserjärjestuse analüüsi (RISA). 
 Sulestikubakterite arvukus leiti rasvatihasel olevat tunduvat kõrgem kui 
must-kärbsenäpil. See näitab, et sulestiku bakteritega asustatuse tihedus võib 
erineda isegi koosesinevate, samu elupaiku, pesapaiku ja toitumisharjumusi 
jagavate linnuliikide vahel (artikkel II). 
 Mõlema eelmainitud bakteritüübi arvukus oli rasvatihase seljapoolel kõrgem 
kui kõhupoolel. Vabaltelavate (kuid mitte kinnitunud) bakterite arvukuses oli 
kahe kehapiirkonna vahel tugev positiivne seos (artikkel III). See leid rõhutab 
proovide kogumise metoodika standardiseerimise tähtsust. 
 Rasvatihastel leiti keskmine sulebakterite mitmekesisus isendi kohta olevat 
suhteliselt kõrgem okasmetsas, kuid bakterite arvukus oli kõrgem hoopiski 
lehtmetsas. See tulemus näitab, et sulestikubakterite koosluste omadused võivad 
erineda elupaikade vahel isegi väga väikesel geograafilisel skaalal. 
 Käesolevas uurimuses näidati esimest korda, et kinnitunud bakterite arvukus 
lindude sulestikus võib pesa ehitamise jooksul kiirelt tõusta ja hiljem uuesti 
langeda (artiklid I ja IV). Sarnased muutused leidsid aset ka vabaltelavate 
bakterite arvukuses. Bakterite arvukus sulestikus varieerus märkimisväärselt ka 
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aastate vahel, ehkki kinnitunud bakterite arvukused samadel isenditel eri 
aastatel olid omavahel korrelatsioonis (artikkel III). 
 Bakterite liigiline mitmekesisus rasvatihaste sulgedel oli soost sõltuv, 
kusjuures isastel olid bakterikooslused keskmiselt mitmekesisemad kui emastel 
lindudel (artikkel I). Samas aga oli bakterite arvukus kõrgem emaste sulgedel, 
kusjuures see seos kehtis nii rasvatihasel kui ka must-kärbsenäpil (artiklid I ja 
II). Neist leidudest viimane on kooskõlas hüpoteesiga, mille kohaselt bakterite 
arvukus eri soost lindude sulgedel on seotud sugupoolte erineva tööjaotuse ja 
sellest tingitud käitumisega sigimisperioodil. 
 Vabaltelavate bakterite arvukus rasvatihaste sulgedel oli positiivses seoses 
emaslinnu massiga, samas aga kinnitunud bakterite arvukus seostus sigimis-
pingutuse tipp-perioodil emase massiga negatiivselt (artikkel I). Must-
kärbsenäppidel leiti negatiivne seos linnu kehamassi ja sulebakterite liigilise 
mitmekesisuse vahel (artikkel II). Rasvatihastel oli bakterite arvukus kõrgem ka 
neil lindudel, kellel lennuvõimestus vähem järglasi (artikkel II). Need 
tulemused viitavad, et sulestiku bakterikooslused võivad sõltudalindude 
konditsioonist ja sigimispingutuse suurusest. 
 Poegade kasvatamise perioodil oli emaste rasvatihaste sulestiku eredus 
negatiivses seoses sulgi lagundavate bakterite liigilise mitmekesisusega. Veelgi 
enam, kinnitunud bakterite arvukuse muutusega pesitsushooaja jooksul kaasnes 
vastupidise suunaga muutus sulestiku ereduses (artikkel V). Tegu on esimese 
uurimusega, kus karotinoididel põhineva sulestikuvärvuse seos sulestiku 
bakteriflooraga leidis kinnitust emaslindude puhul. 
 Kokkuvõttes aitavad käesolevas töös kirjeldatud tulemused paremini mõista, 
kuidas sulestikku asustavad bakterikooslused on seotud elukeskonna oma-
dustega ja lindude elukäigu parameetritega. Need teadmised on hädavajalikud 
edasiste uuringute planeerimiseks, et välja selgitada ja mõista kirjeldatud seoste 
taga peituvaid põhjuslikke mehhanisme. 
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