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INTRODUCTION 
 
In this thesis, the concepts and ideas of the weakly nonlinear long wave theory 
have been applied to two different wave systems – planetary-scale long waves 
(Rossby waves) in layered medium and long anthropogenic waves on the 
background of complex surface wave systems in shallow water. In studies of 
Rossby waves the central object of investigation is the kinetic equation whereas 
in studies into long surface waves in shallow water the results obtained with the 
use of the relevant kinetic equation serve as the starting point. Also, several 
complementary aspects such as the description of a specific mechanism of 
formation of layers in realistic conditions as well as problems of calibration of 
multi-sensor measurement equipment of complex geophysical processes have 
been analysed in the light of the two main frameworks. 

The interrelations of the different physical systems discussed in the thesis are 
practically not reflected in the publications. Several recent developments in the 
framework of the used approaches such as the theory of multi-modal kinetic 
equations or the nonlinear aspects of the ship wave theory have been only 
published in research papers and have not been described on the textbook level 
yet. For the listed reasons Chapter 1 as well as some other sections of the thesis 
contains a relatively large amount of introductory material necessary to follow 
the presented results as well as extended discussion of interrelations of the 
different sections. 

Chapter 2 is dedicated to the numerical and analytical studies (based on the 
kinetic approach) of nonlinear interactions of Rossby waves in a two-layer 
model ocean (Papers I, VII). The key development consists in (i) constructing 
an effective numerical solver for the kinetic equation for Rossby waves in two-
layer ocean, and in (ii) establishing the basic tendencies of the spectral 
evolution. These papers are the first systematic studies of equation of this type 
in multimodal systems and have served as a basis for extensive later research 
(Soomere 1995, 1996 [112, 113]). For that reason these studies are presented in 
some detail. 

The two-layer structure is the simplest representation of the vertical 
stratification of the ocean (Pedlosky 1998 [84]). Some aspects of the 
mechanisms leading to the formation of the more general layered structure are 
studied in Paper IV in the framework of a one-dimensional model describing 
layer formation resulting from an interplay of the double diffusion and the 
turbulent mixing.  

The importance of twinning of the studies of the kinetic equation and long 
weakly nonlinear waves in shallow water, with equally important role of both 
the counterparts, becomes evident in Chapter 3 that is dedicated to a 
comparative study of anthropogenic and natural waves. Some basic concepts of 
the linear wave theory that are extensively used in Papers V, VI as well as a 
description of the non-linear approach used in the discussion of ship waves, a 
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short overview of wind wave modelling efforts in this area and numerically 
modelled wave climate of Tallinn Bay are also sketched. 

The starting point of the main body of Chapter 3 is an important property of 
wind wave fields in the Baltic Sea, namely, that the periods of wind waves in 
this area are relatively small. The relevant analysis for the sea areas adjacent to 
Estonia is performed in Paper III based on long-term measurements at 
Almagrundet. This feature has been numerically established for the Tallinn Bay 
conditions in (Soomere 2005 [121]) with the use of the WAM wave model, 
kernel of which is the kinetic equation for surface waves (Komen 1994 [55]). 
Since wave models based on the kinetic approach cannot correctly treat ship 
waves, their basic properties are extracted from the results of field experiments 
in 2002–2004 (Papers II, V, and VI). Some aspects of building and calibration 
of complex measurement systems are described in Paper VIII. The key 
development is that waves from high-speed ferries may serve as a qualitatively 
new forcing factor of local ecosystem of the bay because the periods of the 
highest waves excited by fast ferries greatly exceed typical periods of wind 
waves in this area (Paper II).  

The description of ship wave properties in Paper V suggests that both the 
linear theory and the higher-order Stokes theory fail to adequately describe their 
properties, and that the cnoidal wave theory probably is an adequate tool. This 
suggestion is verified based on in situ measured surface time series (Paper VI). 
The influence of ship waves (that is already high at certain depths owing to the 
difference of periods) has been shown to be even higher because of their highly 
cnoidal and at times even solitonic nature (Paper VI). Finally, some 
environmental implications of specific properties of ship waves are discussed 
based on Paper II. 
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Main arguments proposed to defend 
 
1. An efficient numerical solver for the kinetic equation for Rossby waves in a 
two-layer ocean has been constructed. This development includes treating of 
several nontrivial technical problems such as geometrical description of 
resonance curves, conversion of the collision integrals with singular kernels 
over an infinite domain to integrals with regular kernels over a finite domain, 
establishing the double resonance points and avoiding them in the solver, usage 
of a higher spectral resolution in a part of the computational domain, and the 
choice of an optimal computational domain. 
 
2. The basic features of the potential final stage of the evolution of different 
Rossby wave systems have been identified based on numerical studies of the 
long-term evolution of largely different initial fields of Rossby waves 
(including initially isotropic, with initially dominating zonal flow component, 
and with initially dominating meridional flow component). The computations 
have been performed for the typical two-layer ocean conditions where the ratio 
of the depths of the upper and the lower layer is approximately 1:5. 
 
3. Shown is that the main features of the temporal evolution of the barotropic 
mode in Rossby wave systems in a two-layer ocean follow the analogous 
features of barotropic Rossby wave systems. An appreciable part of the wave 
energy is transferred to the nearly zonal flow in all the considered cases. In 
other words, it is demonstrated that resonant interactions cause the generation of 
a nearly-zonal flow (that is, a flow mostly directed along parallels) also in the 
Rossby-wave systems in a two-layer medium. 
 
4. A specific feature of the two-layer evolution of Rossby wave systems is that 
the nearly-zonal flow is practically barotropic whereas the baroclinic flow may 
remain or become practically isotropic. This sort of flow is generated from very 
different initial conditions. The majority of the energy of the zonal flow is 
concentrated in wave components, the length of which matches the baroclinic 
(internal) Rossby radius that characterises the typical scale of synoptic motions 
in realistic conditions. The typical wavelength of components of the nearly 
zonal flow is therefore about 100 km and the typical period a few tens of days in 
open ocean conditions. In the Baltic Proper the internal Rossby radius is smaller 
and the classical beta-effect is overrided by the topographic beta-effect; for that 
reason generation of motions along bottom isolines is probable, in which the 
dominating wavelength may be about 10–20 km (in the Gulf on Finland even  
1–5 km). 
 
5. Based on above calculations it is hypotesized that Rossby-wave systems in 
multi-layered media tend to evolve towards a specific final state consisting in a 
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superposition of strong barotropic nearly zonal flow and more or less isotropic 
system of motions of higher modes. (Remark: parallel studies with the use of 
the same numerical method have shown the possibility of exciting of meridional 
anisotropy in higher modes and a multi-stage evolution towards the 
thermodynamical equilibrium state, see details in Soomere, Phys. Rev. Lett. 
1995). The described mechanism may be used, for example, in the analysis and 
forecast of the position of the polar front and its meanders, or flows directed 
along bottom isolines in the Baltic Sea. 
 
6. The simulations demonstrate that the evolution of multi-modal (in this case 
consisting of the barotropic and one baroclinic mode) Rossby-wave systems is 
faster than the evolution of purely barotropic systems with an equal energy. In 
other words, the presence of the layers and the baroclinic mode serves as a 
”catalyst” for evolution of Rossby wave systems. 
 
7. The properties of a one-dimensional model (developed by Dr. Jaak Heinloo) 
that reproduces the layer-formation process owing to the interplay of the double 
diffusion and the turbulent mixing are analysed. Shown is that for the typical 
values of temperature and salinity in both open ocean and in the Baltic Sea, and 
for roughly estimated extreme values of the turbulent kinetic energy, the 
relevant numerical scheme is stable provided ( ) 01.0/2 >∆∆ τh , where h∆  is 
the step of the spatial grid and τ∆ is the time step. It is numerically 
demonstrated that for typical ocean conditions a sort of layered structure may be 
formed within an appreciable time.  
 
8. The typical and extreme properties of wind waves in the northern Baltic 
Proper have been established based on factually measured wave data near 
Almagrundet (Sweden) during about 25 years (1978–2003). Shown is that the 
typical periods of wind waves in the Baltic Sea are relatively small: usually 4–6 
s and reach about 10 s only in extreme storms. The basic conclusion is that 
dominating periods of wind waves are clearly smaller than the periods of the 
highest waves from fast ferries. 
 
9. The parameters of waves from fast ferries have been established based on 
extensive wave measurements in the coastal area of Tallinn Bay. The heights of 
such waves are moderate: the daily highest examples are usually about 1 m 
high. Shown is that the majority of ship wave energy in Tallinna Bay is 
concentrated in very long waves, with periods of 10–15 s and and with heights 
up to 1 m. 
 
10. An extensive comparison of the parameters of ship waves and wind waves 
in Tallinn Bay has been performed. The reference data form the simulated wind 
wave properties obtained with the use of the WAM wave model that is based on 
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the kinetic equation for wind waves. The main outcome from the comparison is 
that:  
• the wind wave climate is, in average, so mild that the daily highest waves 

from fast ferries belong to the annual highest 1–5% wind waves;  
• the probability of occurrence of about 1 m high waves that have periods of 

10–15 s is extremely small; for that reason the waves from fast ferries 
eventually serve as a qualitatively new component of hydrodynamic activity 
in the Tallinn Bay area. 

 
11. Shown is that nonlinear effects become important for the highest and 
longest components of ship waves (the height above 0.5 m, period over 10 s) 
already at a depth of 10–15 m. Based on experimentally recorded time series of 
water surface in ship wakes it is demonstrated that: 
• the shape of long and high waves from fast ferries well matches the shape of 

cnoidal waves – the periodical solutions to the Korteweg-de Vries (KdV) 
equation;  

• the shape of the highest examples of waves from fast ferries nearly perfectly 
matches the shape of the Korteweg-de Vries solitons. 

Based on the listed features it can be recommended to use the KdV equation for 
description of long waves from fast ferries also in realistic conditions in the 
coastal zone. 
 
12. Comparison of properties of sine and cnoidal waves shows that the near-
bottom velocities excited by the highest and longest examples of waves from 
fast ferries at certain depths considerably exceed the estimates of these 
velocities obtained in the framework of the linear surface wave theory. 
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1. WEAKLY NONLINEAR WAVES  
IN GEOPHYSICAL FLOWS 

 
1.1. Linear, weakly nonlinear and long waves 

 
Wave motion is one of the most important constituents of energy and an 
essential agent of energy redistribution in geophysical flows. Different kinds of 
waves and wave-like motions have been an important subject for studies in 
various areas of geophysics for centuries. To the first approximation, wave 
motion is frequently assumed to be linear, that is, governed by linear differential 
equations. The primary property of linear waves is that any superposition of 
such waves satisfies the governing equation. Another basic feature is that they 
propagate independently of other waves of the same class. The properties of 
linear waves, the mechanisms governing their generation, propagation and 
damping in the oceans and the atmosphere have been studied in great detail (e.g. 
LeBlond and Mysak 1978 [60]). 

Although the linear approximation is acceptable in many cases, wave motion 
in nature is seldom perfectly linear. Apart from the highly nonlinear phenomena 
such as turbulent flows (Heinloo 1984 [37]) or violent wind wave breaking 
(Longo et al. 2002 [64]) there exist situations of considerable practical interest 
when disturbances of the medium are mostly independent of each other but yet 
their nonlinear interplay is a decisive factor of the evolution of the whole 
system in long-term run. Certain features of such wave systems are the subject 
of a large part of this thesis. 

Heuristically, weakly non-linear waves can be defined as a class of motions, 
for which non-linear effects are negligible in the time scale comparable with 
their characteristic period but for longer time scales non-linearity may have 
significant impact. They are thus ”intermediate” motions between linear waves 
and non-linear motions. Such motions are frequently described by the equations 
in which the nonlinear terms are much smaller than the linear terms. In 
nondimensional form, such equations contain small parameters (that sometimes 
are called the measure(s) of non-linearity, cf. Eq. (1) below) at the nonlinear 
terms. To the first approximation, motions described by such equations are 
governed by the linear terms.  

The nonlinear terms, whatever small they are, contribute to the motion to 
some extent. Under certain conditions, such a contribution may be cumulative. 
In the kinetic theory of weakly nonlinear waves the cumulative effects become 
evident as slow energy exchange (equivalently, changes in wave amplitudes) 
between wave components whereas the shape of the waves, the dispersion 
relation and the propagation properties do not change. The equation describing 
the energy exchange usually is a strongly non-linear equation called kinetic 
equation. 
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Probably the most well-known class of nonlinear wavelike motions form 
structures described by the Korteweg-de Vries equation (e.g. Drazin and 
Johnson 2002 [19]). This equation has a nondimensional form 

06 =++ xxxxt ηηηη  and describes, among other physical phenomena, the 
evolution of the surface elevation η  in long waves of finite height in shallow 
water. The wave propagation occurs in conditions where the nonlinear xηη6  
and the linear dispersive terms tη , xxxη  have the same magnitude. For that 
reason, it is frequently said that the KdV equation describes the situation where 
the dispersive properties are balanced by the nonlinearity. This balance is the 
reason for the modification of the wave shape that generally is no more 
sinusoidal and, for very long waves, leads to the soliton formation. 

The periodic solutions of the KdV equation are called cnoidal waves. 
Formally, the short-wave limit of the cnoidal wave solutions to the KdV 
equation is a linear sine wave and the long-wave limit is a soliton. KdV solitons 
are known to interact in a very complex manner (e.g. Drazin and Johnson 2002 
[19]). Interactions of wavelike solutions of this equation and its spatial 
generalization (the Kadomtsev-Petviashvili equation) may lead to other 
manifestations of nonlinearity such as essential changes of the wave shape and 
height, or extensive phase shifts (e.g. Hammack et al. 1989 [28], Soomere and 
Engelbrecht 2005 [122]). Yet the wave systems described by the KdV and 
Kadomtsev-Petviashvili equations are also frequently called weakly nonlinear 
(Segur and Finkel 1985 [107]). 

The fact that different scientific schools use the same term for different 
things is sometimes confusing; yet in both cases the central objects of study are 
progressive waves. The benefit from the use of both the described approaches 
becomes evident in the comparative analysis of wind waves (that can be 
interpreted as a random wave field, evolution of which is described by the 
kinetic equation) and wakes from fast ferries that consist of a few wave crests 
localised in time and space. 

From the variety of weakly nonlinear motions in the geophysics, this thesis 
is concentrated to long weakly nonlinear waves. This wave class is particularly 
relevant to the use of the methods and ideas of the weak nonlinear theory. On 
the one hand, long waves frequently are ‘nonlinear’ enough to initiate effective 
balance between dispersive and nonlinear effects (e.g. long surface waves of 
finite amplitude in shallow regions (Hammack et al. 1989, 1995 [28, 29]). This 
feature is important in the analysis of long waves from fast ferries that obtain 
clearly nonlinear character in the coastal area (Paper VI). On the other hand, 
certain features of the energy exchange between the components of several 
motion systems only become evident when the disturbances are long enough for 
the wavelike behaviour to dominate. The classical example is the conversion of 
the practically isotropic two-dimensional geostrophic turbulence (which is 
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strongly nonlinear a priori) to a system of weakly nonlinear Rossby waves at a 
certain stage of the scale-increasing process (Rhines 1979 [101]). 

The definition of a long wave crucially depends on the underlying physical 
system. For Rossby waves and surface waves the relevant length scales differ 
considerably. The typical length scale of barotropic Rossby waves in the ocean 
is, at least, a few hundreds of kilometres, thus they are long intrinsically. 
Surface waves are treated as long if their length greatly exceeds the water depth. 
Thus for shallow coastal areas already waves with a length of a few tens of 
metres may be very long whereas the same waves in the deep ocean are short 
waves. 

Long waves are particularly important in geophysical flows where the 
characteristic horizontal and vertical scales frequently differ considerably. The 
description of long waves often is considerably simpler than the general theory 
of waves of the same type. In the classical shallow-water theory, for example, 
the horizontal velocity is independent of the location of the water particles, and 
the vertical velocity is a linear function of the location (Dean and Dalrymple 
2004 [17]). The same idea is used in the mathematical description of Rossby 
waves in the quasi-geostrophic approximation: a relatively simple equation is 
obtained for the vertical velocity (Kamenkovich et al. 1986 [48]) and the 
equations for the horizontal velocity components are split into a separate system 
of equations. Since motions in the oceans and the relevant physical fields are 
intrinsically three-dimensional (denoted as 3D in what follows), the basic 
advantage of the approach of long waves consists in the possibility of splitting 
the general 3D equations of motions into a system of two-dimensional (2D) 
equations and an additional equation for the vertical velocity. This feature 
allows considering many geophysical systems as a superposition of 2D motions 
with an acceptable accuracy. 

From the viewpoint of the long wave theory, the possibly layered structure 
of the physical fields in the ocean and the atmosphere has a particularly 
important role. It frequently allows considering motions within a specific layer 
only. The ratio of the horizontal and the vertical scales of the motion in one 
layer obviously is larger than for the motions in the whole water (air) column. 
Thus the long wave theory is even more appropriate in the layered ocean. A 
large part of the results of this thesis have been obtained for stratified 
environment in the form of a layered ocean. Thus the processes governing layer 
formation are an important topic of long wave studies in geophysical 
applications and are also analysed to some extent. 
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1.2. Kinetic theory of weakly nonlinear waves 
 
The basic contribution of interactions of weakly nonlinear waves to the 
evolution of wave fields is the change of wave amplitudes in a time scale of the 
order of many wave periods (Zakharov et al. 1992 [145]). The idea behind is 
that the nonlinearity is so weak that it practically does not affect single 
disturbances but is strong enough to cause certain coupling of different wave 
components that meet each other in some area of the physical space. The 
nonlinear coupling in this framework only affects the energy of disturbances, 
but not their shape or other features. 

Long-term evolution of weakly nonlinear wave systems can be described, to 
the first approximation, in the kinetic framework. The natural motion system is 
assumed to consist of a vast number of wavelike harmonics so that it can be 
treated as a random wave field with continuous spectral density (spectrum) of 
energy (e.g. Reznik 1986 [100]; Zakharov et al. 1992 [145]; Komen et al. 1994 
[55]). In such a case the behaviour of particular wave components is usually of 
no interest. The changes of the general properties of such motions are 
determined by the temporal behaviour of their statistical moments or cumulants. 
The evolution of cumulants is described by an infinite system of coupled 
equations similar to the BBGKY system (Tapp 1989 [130]). Usually (for 
example, in the analysis of turbulent motions) this system cannot be truncated 
because of the incessant generation of the higher moments by the nonlinear 
coupling (Monin and Yaglom 1967 [75]). Truncation is possible only in specific 
cases; for example, in the case of the Gaussian systems when the third and 
higher order cumulants are identically zero. 

For weakly nonlinear waves the system of equations for cumulants can be 
truncated in a consistent manner. Hasselmann (1962 [33]) pointed out that the 
initial correlations between the harmonics of weakly nonlinear surface waves 
are damped relatively fast by dispersive effects in comparison with the rate of 
growth of the correlations by nonlinear effects. In other words, changes of the 
wave field owing to linear wave propagation over sea surface are much faster 
compared to the nonlinear changes. Consequently, he argued, a weakly 
nonlinear dispersive wave field can be assumed to be approximately Gaussian. 
He assumed that the second and third order cumulants govern the motion and 
the fourth and higher order cumulants can be discarded. This assumption leads 
to a closed equation describing the evolution of the energy spectrum of such 
wave fields. This equation is called kinetic equation. The relevant approach is 
called the kinetic theory of waves. Such wave fields are sometimes also called 
wave turbulence or weak turbulence (Zakharov et al. 1992 [145]). The 
derivation of the kinetic equation was revisited by Reznik (1984 [97]) who 
showed that it is correct under certain more general restrictions. Although the 
assumptions made in deriving of the kinetic equation are not perfect (Majda et 
al. 1997 [66]), applications based on the kinetic equation or on its simplified 
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versions frequently show excellent results in applications (e.g. Komen et al. 
1994 [55], Zakharov et al. 1992 [145], Zakharov and Pushkarev 1999 [146]). 

From this description it follows that the magnitude of non-linearity has a 
fundamental importance for the mathematical modelling of wave evolution. On 
the one hand, without non-linearity several fundamental changes in the wave 
properties such as gradual increase of dominating periods of storm waves are 
impossible. On the other hand, the weakness of non-linearity is a key issue, 
because for stronger non-linearity the truncation of the sequence of equations 
for cumulants may be impossible.  

The kinetic equation may be interpreted as a hydrodynamical analogue of the 
Boltzmann equation for an idealized gas. This analogy becomes evident when 
one considers a wave field as a superposition of a huge number of localized 
wave packets, each associated with its mean wave vector and frequency 
(Hasselmann 1967 [35], Soomere 1992b [110]). As distinct from the classical 
kinetic theory, interaction (collision) between packets may occur only if at least 
three packets meet each other. Although a continuum of different packets may 
coexist at any given point, an appreciable energy exchange occurs only if the 
wave vectors and frequencies of a set of packets satisfy certain geometrical 
conditions called resonance conditions (see below, Sections 2.4 and 2.5). These 
conditions serve as another important difference from the classical kinetic 
theory and ensure that interactions of this type are relatively rare. As a result, 
the time of free propagation of the packets is much longer than the duration of 
the ‘collisions’; consequently, energy exchange occurs slowly compared with 
the wave propagation. 

The coupling of wave components in this framework is a specific case of 
resonance. The relevant energy exchange mechanism is called resonant 
interaction. The presence of small nonlinear terms in the governing equation 
means that evolution of a certain wave component depends on other wave 
components. If this wave component satisfies the resonance conditions together 
with a certain set of other waves, its amplitude may grow linearly in time. 
Physically, this is only possible during a short time interval, and some other 
mechanism should limit this growth. The kinetic equation can be interpreted as 
the mathematical description of the relevant limiter. 

Although the mechanism of resonant interactions is common for a wide 
variety of wave classes in geophysics, in the initial stage of formation of the 
kinetic theory, there was no common understanding of the properties of the 
kinetic equations. The derivation of this equation and establishing its basic 
properties was performed separately for each wave class (cf. Hasselmann 1962, 
1963 [33, 34], Kenyon, 1964 [49], Longuet-Higgins and Gill 1967 [65]). The 
simple form of the dispersion relation for Rossby waves made this wave class 
one of the most important model systems for studies of the kinetic theory in the 
1960s–1980s. The kinetic equation for Rossby waves has a relatively simple 
structure, which reflects several interesting physical phenomena and for which 
many results can be proved analytically. 
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Rapid progress in understanding of the physics of the kinetic equations was 
gained through extensive studies in 1980s (see Zakharov et al. 1992 [145] for 
overview). One of the main outcomes was the perception that the form of the 
kinetic equations, the methods of their handling and their basic properties are 
universal (Zakharov et al. 1992 [145], Soomere 2001 [114]). The conservation 
laws, the law of increase of entropy (reflecting the tendency of the system to 
evolve towards the thermodynamically equilibrated state), the basic features of 
the thermodynamically equilibrated spectra and other exact solutions are valid 
for all wave systems governed by kinetic equations. The number of exceptions 
is small and usually connected with specific geometric features of the resonance 
conditions and the corresponding curves or surfaces (e.g. Balk 1997 [8], 
Soomere 2001 [114]). Only the physical meaning and appearance of several 
coefficients are different, because they are defined jointly by the dispersion 
relation and the appearance of the nonlinear terms in the governing equation 
(Zakharov et al. 1992 [145], Soomere 2003 [116]). 

This progress allowed to correctly link the results obtained with the use of 
the classical asymptotic analysis of solutions to the primitive wave equations 
(used in most of the references above) with the more general results obtained 
with the use of the Hamiltonian approach in studies of V.E. Zakharov and his 
school. This feature also allows to transfer many results proved for one 
particular wave system (admitting e.g. extensive analytical study or simple 
numerical models) to all systems allowing kinetic description. In other words, 
particular results obtained, for example, for Rossby waves were, with some 
restrictions, directly applicable in surface wave theory. The methods of 
constructing of numerical solvers of the kinetic equations as well as the 
problems with their implementation are also similar to each other. In particular, 
results and experience obtained in the first part of this thesis for numerical 
simulation of the energy exchange between Rossby waves have been 
particularly useful for simulating spectral evolution of surface waves in a 
theoretically and numerically much more complicated situation.  
 
 

1.3. Equations of long waves on the β-plane 
 
Many processes in astrophysics [18], plasma physics [31], and geophysics [101] 
can be reduced to a problem of free (quasi) 2D anisotropic turbulence. Under 
some restrictions, this phenomenon can be described by the 2D Charney-
Obukhov equation (frequently called Hasegawa-Mima equation after Japanese 
scientists who re-derived it for certain applications in plasma [32]): 

0),(//)( 2 =∆+∂∂+∂−∆∂ ψψεψβψψ Jxta . (1) 
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Here yxyx fggfgfJ −=),(  is the 2D Jacobi operator; the function 

),( yxψψ =  usually has the meaning of the stream function, t  is the physical 
time and the meaning of parameters βε ,,a  depends on the physical system. 

In geophysical applications, Eq. (1) describes evolution of so-called 
synoptic- scale barotropic1 motions in the ocean (atmosphere) of constant depth 
in Cartesian coordinates ( )yx,  in the β -plane approximation. The x -axis is 
directed to the North and the y -axis to the East. These motions (synoptic rings 
in the ocean; cyclones or anticyclones in the atmosphere) have the horizontal 
scale L  of order of the external or barotropic Rossby deformation radius 

)2000(1001 ≈= −aLR  km in the ocean (atmosphere), the vertical scale of the 
depth of the ocean (thickness of the atmosphere) and the time scale ≥τ several 
dozens of days (a few days). The Earth’s surface is assumed to be an infinite 
even plane, where the Coriolis parameter yff β+= 0  (the vertical component 
of the Earth’s rotation) varies linearly in the North-South direction. This 
variation is usually called β -effect, the typical value of the Coriolis parameter 
at mid-latitudes is 4

0 10−≈f  s–1, and 1110−≈β  s–1m–1 is the North-South 
derivative of the Coriolis parameter. 

The wave solutions of linearised Eq. (1) have the dispersion relation 
( ) ( )22/ ak +−= κβκω
r

 (here ( )lk,=κ
r

 is the wave vector and κκ
r

= ) and 
are called Rossby waves. They exist because of the interplay of rotation and 
sphericity of the Earth. This interplay is reflected by the term proportional to β  
in Eq. (1), the presence of which admits wave solutions to this equation. 
Without this term, Eq. (1) is equivalent to the equation of 2D isotropic 
turbulence that has no wave solutions. 

The specific role of Rossby waves among other wavelike processes in the 
ocean is that they carry about 80% of the wave energy in the open ocean 
(Kamenkovich et al. 1986 [48]). Rossby waves also form an appreciable 
fraction of the total energy of motions in the ocean since about 10% of the total 
kinetic energy of all the motions in the ocean belongs to synoptic processes 
(Kamenkovich et al. 1986 [48]). Rossby waves serve as a particularly rich in 
content wave system of direct geophysical interest. They possess several 
important properties: the 2D nature, the anisotropy of the dispersion relation 
(i.e. the wave properties depend also on the propagation direction), the 
possibility of double resonance, and the existence of an additional conservation 
law of enstrophy. Owing to their relatively simple dispersion relation (an 

                                                                          
 

1 Barotropic motions frequently are interpreted as vertically nearly homogeneous flows. 
In fact, the motions are called barotropic when the isopycnal surfaces are horizontal, 
equivalently, the density of fluid only depends on the pressure. 
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explicit algebraic polynomial rational function of the wave vector components) 
and the possibility of triad resonant interactions they admit extensive analytical 
studies into the properties of the corresponding kinetic equation. 

The role of synoptic-scale motions has been intensely investigated since 
MODE and POLYMODE experiments in the 1970s. Such in situ studies as well 
as laboratory studies of the synoptic scale motions (e.g. Read et al. 2004 [94]) 
are time consuming and extremely expensive. The approximation of weakly 
non-linear Rossby waves is a feasible way to study the long-term behaviour of 
synoptic-scale motions in the oceans (atmosphere). In the nondimensional form 
of Eq. (1), 1== βa  and 1)/( 2 <<= LU βε  can be interpreted as the measure 
of non-linearity (here U is the characteristic velocity scale). For small values 

1<<ε , motions governed by Eq. (1) can be interpreted as consisting of a large 
number of wavelike components that are coupled only through the term 

),( ψψε ∆J . If this term is small, the coupling is weak and waves behave 
practically independently of each other. 

To the first approximation, the influence of nonlinearity can be described in 
terms of resonant interactions, equivalently, with the use of the kinetic theory of 
weakly nonlinear waves. This theory has been first formulated for four-wave 
interactions of surface waves (Hasselmann 1962 [33]) and a few years later 
generalised to three-wave interactions of barotropic Rossby waves (Kenyon 
1964 [49]). If the system of synoptic motions can be treated as a random weakly 
nonlinear wave field with continuous energy spectrum, the kinetic equation 
describes slow (as compared to the characteristic wave period) evolution of the 
wave system owing to interactions between wave harmonics satisfying so-called 
resonance conditions ( ) ( ) ( ) 021 =++ κωκωκω

rrr
, 021

rrrr
=++ κκκ . 

Extensive numerical experiments with the kinetic equation for barotropic 
Rossby waves have been performed in the 1980s (Reznik and Kozlov 1981 
[95], Reznik and Soomere, 1984a,b [98, 99], Reznik 1986 [100]). The basic 
features of the evolution of these wave systems are well known by now. The 
most important feature is that they tend to evolve towards a specific 
thermodynamically equilibrated state, consisting of a superposition of a zonal 
flow (i.e. flows along parallels in the Earth’s oceans) and a ‘classical’ isotropic 
equilibrium state of the 2D isotropic turbulence (Reznik 1986 [100]). 
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1.4. Multi-modal kinetic equations and  
the multi-layer ocean 

 
Interactions of waves from different classes may provide an efficient way of 
energy redistribution in geophysical flows where frequency domains often are 
interlapping (e.g. interactions of two inertial waves with a Rossby wave, 
Wiklund 1999 [143]). The derivation of the relevant kinetic equation 
(sometimes called multi-modal kinetic equation) describing interactions of 
several wave classes was probably first presented in (Zakharov and Schulman 
1980 [144]) and was extended to the Rossby waves in (Soomere 2003 [116]). 
However, such systems have been studied in detail only in a particular case 
when frequencies of the waves are essentially different (Zakharov et al. 1992 
[145], Section 3.2.2). In the general case of comparable frequencies and/or a 
larger number of wave types, the properties of multi-modal kinetic equations 
have not been analysed numerically until studies described in Papers I and VII 
(Piterbarg 1998 [92]). Only some preliminary experiments for Rossby waves in 
a two-layer medium have been reported in (Kozlov et al. 1987 [56]). 

The barotropic model of geophysical flows often inadequately represents the 
vertical structure of the oceans and the atmosphere because these media usually 
are stratified. The vertical structure of synoptic-scale motions in a stratified 
fluid can be described in terms of a linear combination of a barotropic and a 
(maybe infinite) number of baroclinic modes (Phillips 1966 [90]). This 
decomposition is equivalent to a model, consisting of several non-mixing 
vertically homogeneous layers whereas the motion in each layer is effectively 
depth-independent. This leads to a certain de-coupling of motions in different 
layers that are only coupled through the motions of the interfaces. The simplest 
representation of a stratified medium is a 2-layer model of synoptic-scale 
motions. It serves as the first approximation of 3D motions in terms of the 
basically 2D description of motions in a thin water layer on a β-plane. This is 
frequently an acceptable approximation, because most of the ocean normally 
contains, at least, two layers separated by the main thermocline (e.g., Pedlosky 
1998 [84]). In medium latitudes, the seasonal thermocline occasionally creates a 
three-layer structure. In some areas (e.g. in the Baltic Sea, Aitsam et al. 1984 
[2]) the barotropic mode is damped and the Rossby-wave energy is mostly 
concentrated in the first and the second baroclinic modes. To resolve the 
vertical structure in such situations, at least three-layer model is necessary 
(Soomere 2003 [116]). 

Rossby waves in a stratified medium serve as an example of a set of wave 
components with different dispersion relations but with comparable frequencies. 
The advantage of the layered model as compared with the models with 
continuous vertical density alteration (Piterbarg, 1998 [92]) is that the 
coefficients of the kinetic equation and many basic features of the energy 
transfer can be established analytically. Also, the important question – whether 



 
 

25

the kinetic approach reproduces the properties of the governing equations – can 
be clarified to some extent. For example, kinetic models are irreversible and 
may possess additional motion invariants as compared with the physical 
systems (Reznik 1984 [97], Balk 1991 [7]). Moreover, their solutions may 
evolve towards principally different final states as compared to those of the 
governing equations (cf. results of Carnevale 1982 [12], Vallis and Maltrud 
1993 [136], Reznik 1986 [100]). 

The derivation of the kinetic equation for Rossby waves in the two-layer 
case is presented in (Kozlov et al. 1987 [56]). Its derivation for the multi-layer 
case has been studied in (Piterbarg 1998 [92]) on the basis of Hamiltonian 
approach, and in (Soomere 2003 [116]) for the three-layer model. The 
generalisation of this procedure for the multi-layer case is straightforward; 
however, calculation of the relevant coefficients is nontrivial. The resulting 
effects of the strong layering in some cases create particularly interesting 
phenomena such as the double resonance and multiple scenarios of approaching 
the thermodynamical equilibrium, or even multiple near-equilibrium states 
(Soomere 1995, 1996 [112, 113]).  

In order to use the kinetic framework in the case of a multi-modal wave 
systems (incl. multi-layered model ocean), the equations for the motions excited 
by different wave classes (resp. motion in each layer) must first be modified so 
that each linear part contains one unknown function. Doing this is equivalent to 
introducing normal modes, or diagonalisation of the linear parts of the equations 
(Soomere 2003 [116]). The resulting nonlinear parts consist of certain 
combinations of nonlinear terms from various initial equations. The coefficients 
at these terms are called coupling coefficients because they determine how the 
different modes (wave classes) are coupled with each other. (At times, 
interaction coefficients are also called coupling coefficients, e.g. Axelsson, 
1998 [6]. Such a distinguishing is only important in motion systems described 
by two or more coupled equations). Their appearance depends on the structure 
of both the linear and the nonlinear parts of the governing equations. 

The properties of the coupling coefficients (that are of modest interest in 
studies into dynamical properties of motions) are particularly important in the 
kinetic theory. They enter into the collision integrals of the kinetic equation and 
determine the relative role of triads of various types in the energy exchange. For 
example, in the two-layer model of Rossby waves with a proper scaling of all 
types of triads have equal relative energy exchange intensity, except triads 
containing three baroclinic waves (Kozlov et al. 1987 [56], Papers I, VII). The 
intensity of self-interactions of the baroclinic mode crucially depends on the 
ratio of the depths of the layers and fully ceases in the widely used case of 
layers of equal depth (Kozlov et al. 1987 [56]; Papers I, VII, Soomere, 1996 
[113]). As a consequence, the baroclinic zonal flow and the following large-
scale meridional anisotropy do not emerge and the motion tends to a final state 
consisting of purely barotropic zonal flow and an isotropic wave system (Papers 
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I, VII, Soomere 1995; 1996 [112, 113]). Thus, an improper choice of the model 
may result in a completely different evolution scenario of the whole system.  

The calculation of the coupling coefficients for the two-layer model is 
straightforward (Kozlov et al. 1987 [56]). Their analytic expressions for the 
three-layer model, their role in the energy exchange, and their dependence on 
the particular physical background are analysed in (Soomere 2003 [116]). 
Certain types of interactions totally vanish in several realistic situations. For 
Rossby waves they vanish if and only if an eigenvector of the governing system 
of equations possesses a zero component (Soomere 2003 [116]). The largest 
possible number of vanishing interactions occurs in a specific case of the three-
layer model with the equal depths of the topmost and the lowest layers. Such a 
stratification is not typical in the open ocean but frequently occurs in the Baltic 
Sea (e.g. Aitsam et al. 1984 [2]). 

One might argue that the kinetic framework is not a proper tool for 
describing the evolution of multi-modal Rossby wave systems, because the 
barotropic mode generally propagates much faster than the baroclinic ones. This 
feature is implicitly represented in the kinetic equation where certain classes of 
interaction involving the barotropic harmonics actually do not redistribute 
energy, because the corresponding coupling coefficients vanish. 

An important reason for the numerical modelling of the long planetary-scale 
waves (Rossby waves) in a layered structure consists in establishing a more 
adequate picture about long-term evolution of synoptic scale motions (in 
particular, generation of zonal flows) in realistic conditions. 
 
 

1.5. Ship waves 
 
Waves excited by contemporary ships form a substantial part of surface wave 
activity in many water bodies. The importance of their contribution to the local 
hydrodynamic activity in rivers, inland channels and narrow straits has been 
recognised for a long time. Ship wakes can essentially contribute to the 
shoreline erosion, cause erosion and resuspension of bottom sediments, trigger 
ecological disturbance, cause harm to the aquatic wildlife etc. (Guidelines 2003 
[26], Soomere et al. 2003 [118]). Ship-generated waves have become an 
environmental problem of growing concern in restricted waters and estuaries 
during the last years. In particular, in Scandinavia and in the United Kingdom, 
studies of various aspects of fast ferry operation, including properties of their 
wakes, have been carried out already in the middle of the 1990s (Forsman 1997 
[25], Kirk McClure Morton 1998 [51], Kofoed-Hansen and Kirkegaard 1996 
[53], Kofoed-Hansen and Mikkelsen 1997 [54]). Recently, analogous studies 
have been performed (or are in progress) in many countries (Guidelines 2003 
[26], Parnell and Kofoed-Hansen 2001 [83], Varyani and Krishnankutty 2002 
[137], Whittaker et al. 2001 [142]). 



 
 

27

The introduction of high-speed vessels sailing in open sea areas extended the 
above threats from inland waterways, narrow straits, and archipelagos to much 
larger confined sea areas with low natural wave and tide activity (Parnell and 
Kofoed-Hansen 2001 [83]). These vessels have a high ratio of propulsion power 
to vessel displacement. They are able to sail at speeds comparable with the 
hump speed (that occurs when the half-length of ship waves is close to the 
vessel's length) or with the critical speed (that is, the maximum phase speed of 
surface waves in finite depths). Additionally to an increase of wave heights and 
periods with the increase of the sailing speed, the ship sailing at near-critical 
speeds may generate highly nonlinear waves and KdV solitons (Li and 
Sclavonuos 2002 [61]). 

The kinetic theory employs very weak non-linearity which only contributes 
to wave evolution in long-term run whereas the wave shape and other properties 
coincide with those of perfectly linear waves. This assumption implicitly means 
that wave amplitudes have to be small. For description of spectral evolution of 
storm waves the violation of this assumption probably is not essential, because 
the wave models based on the kinetic approach (Komen et al. 1994 [55]) show 
good results also for rough windseas where wave amplitudes and steepness are 
substantial. 

This and some other basic principles of the kinetic theory (that the wave 
field consists of a large number of wave harmonics which are spread over large 
sea areas, that the wave systems have a continuous spectrum, and that the 
kinetic equation is only valid when group velocities of resonantly interacting 
waves are different, see below) are completely violated for ship wakes. In many 
cases of practical interest the wake waves have considerable heights, are 
localised in small groups and, in particular in shallow water, have nearly equal 
group velocities. Therefore, generally they cannot be considered as a part of the 
surface wave system in the kinetic approach. For the listed reasons, the kinetic 
theory (more specifically, contemporary wind wave models that are based on 
the kinetic description) is used in the context of ship wave studies for estimates 
of the wind wave activity in the areas of interest whereas other approaches are 
used for analysis of the ship waves.  

Numerical studies of wind wave properties in Tallinn Bay with the use of the 
WAM model (based on the relevant kinetic equation, Komen et al. 1994 [55]) 
have shown that the typical periods of wind waves usually do not exceed 6–7 s 
in this area (Soomere 2005 [121]). The specific feature of waves from fast 
ferries is that typical periods of the highest ship-induced waves are much longer 
than wind wave periods (Paper V). The length of ship waves frequently exceeds 
100 m. Since such waves also have considerable heights, they cannot be 
considered as linear in shallow water. The KdV equation is shown to be a 
proper model for such waves in coastal areas. 

The stratification of media, which plays a certain role in the general theory 
of ship wakes (Chung and Lim 1991 [14], Watson et al. 1992 [140]), is not 
taken into account in the studies of ship wakes below. Instead, the attention is 
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paid on their non-linear properties that modify the shape of wake waves and 
enhance certain properties of waves and wave-induced motions. 

The nonlinear properties of ship waves may cause additional severe effects 
because of some specific features of nonlinear interaction of solitonic surface 
waves in shallow water (Miles 1977 [72, 73], Peterson et al. 2003 [86], 
Soomere and Engelbrecht 2005 [122]). The impact on the bottom ecosystem is 
equally important (Erm and Soomere 2004 [20]). The investigation of fast ferry 
waves thus has a great practical importance in quantifying the impact of intense 
ship traffic on the coastline and sediment transport in shallow waters. 
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2. SPECTRAL EVOLUTION OF ROSSBY WAVES  
IN A TWO-LAYER OCEAN  

 
2.1. Kinetic equation for Rossby waves  

in a two-layer ocean 
 
Let us consider large-scale motions in the infinite ocean of constant depth on 
the β -plane consisting of two non-mixing homogeneous layers with densities 

21 ρρ <  and mean thicknesses 21,hh , respectively. The subscript “1” refers to 
the upper layer, “2” – to the lower layer. 
In the kinetic theory it is traditionally assumed that there exist such a great 
number of weakly nonlinear waves that we are allowed to speak about the 
system of waves with a continuous energy spectrum. In this case one is usually 
no more interested in the behaviour of single waves but in the evolution of the 
statistical characteristics of the whole system. The slow evolution of the most 
important statistical quantities – the energy spectra ( )τκ ,0

rF  and ( )τκ ,1
r

F  of 
the baroclinic and the barotropic mode of the motion, respectively – is then 
described by the following system of integro-differential equations (Kozlov et 
al. 1987 [56]):  
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 is the wave vector, τ  is slow time, pmnI~ , 
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frequency of the Rossby waves of the p-th mode, 21012 κκκκ
rrrr

++= , 

221112 dldkdldkd =κ
r

, and integration is performed over the whole 
4-dimensional space ( ) ( )22

2
11

2 ,, lkRlkR ⊗ . The kernel of the collision 
integrals contains three delta-functions, because ( )012

2 κδ
r

 is a product of two 
delta-functions applied to the components of the vector 012κ

r
. The functions 

pmnK~  and pmnN  in the kernel of the collision integrals are as follows: 

( )2121
212121

~~~~~
np

pmn
mp

pmn
nm

pmnpmn
pmn FFCFFCFFCCK κκκκκκκκ

rrrrrrrr ++= , (3) 
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( )( )( )22
2

22
1

22
nmppmn aaaN +++= κκκ . 

Here ( )( )2222

2
1~

mjniijji
p
mn

pmn aalklkC
ji

−−+−= κκγκκ
rr  are the interaction coeffi-

cients, ( )τκ ,rpp FF = , and ( )τκ ,ip
i
p FF r

≡ . The coupling coefficients p
mnγ  can 

be found as ( )11
0
00 1 ss +=γ ; ( )00

0
11 1 ss +=γ ; ( )10

0
10

0
01 1 ss +−== γγ ; 

( )11
1
00 1 ss +=γ ; 2

01
1
11 ss +=γ ; ( )01

1
10

1
01 1 ss +−== γγ , where 10 , ss  are the 

solutions of the equation ( ) 0/ 2212
2

11 =−−+ hshhsh ρρ . The quantities 1
0
−a  

and 1
1
−a  have the meaning of the barotropic and the baroclinic Rossby radii, 

respectively, and can be found from the equations 
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
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


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2
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hh
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g
f

sa p
pp , 

(4) 

where 0f  is the mean value of the Coriolis parameter, g  is the gravity 
acceleration and ( ) 212 / ρρρ −=′ gg . We consider no energy source and 
dissipation. 

Equations (2) serve as a generalization of the classical kinetic equation for 
barotropic Rossby waves and together are also called kinetic equation. 
Equations (2) are the simplest version of the multi-modal kinetic equation 
where only two different modes of motion – the barotropic and the (first) 
baroclinic mode appear. The details of derivation of Eqs. (2) and the 
corresponding dynamical equations can be found in (Kozlov et al. 1987 [56], 
Soomere 2003 [116]). 

In the numerical experiments with the kinetic equation for Rossby waves the 
measure of non-linearity only appears in the definition of the “slow” time 

t2−= ετ  and, therefore, only affects the intensity of energy exchange between 
different wave components. If t  is interpreted as the typical time scale (e.g. 
period) of synoptic-scale motions (a few weeks in the ocean) and the measure of 
nonlinearity is ~0.1, each “slow” time unit corresponds to several years of 
physical time. 

The kinetic equation itself is valid only for limited time intervals 
4ετ << and for the limited lengths of the wave vectors 2εκ << . If τ  is of 

greater value, the higher order interactions will become significant and spectral 
evolution will be described by another equation (Benney and Newell 1969 
[10]). For very short waves the initial assumption of weak nonlinearity is not 
valid (Reznik 1984, 1986 [97, 100]). 
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2.2. Solver of the kinetic equation 
 
Papers I and VII contain description of a fast numerical solver for the kinetic 
equation for Rossby waves in a two-layer ocean, and a description of the basic 
evolution tendencies of the relevant waves system. The investigation of the 
slow evolution of the energy spectra of barotropic and baroclinic modes is 
reduced to the numerical solution of the Cauchy problem for the kinetic 
equation with initial conditions ( ) ( )lkflkF ,0,, = , ( ) ( )lkGlkG ,0,, = . The 
simulations were performed during 5 to 10 ”slow” time units, that is, during 
several tens to a few hundreds physical years. Only spectral evolution governed 
by the homogeneous kinetic equation was studied. Equivalently, evolution of 
freely evolving (i.e. without energy sources or sinks) wave systems towards an 
equilibrium state was considered. 

The solver was initially constructed for medium-size personal computers at 
the end of 1980s. The first numerical experiments, described in Papers I, VII 
were performed with the use of an 8 MHz CPU. Later studies based on this 
solver were performed with the use of CRAY supercomputers (Soomere 1995, 
1996 [112, 113]) and revealed some other interesting features of multi-modal 
wave systems. However, extensive numerical studies of multi-modal kinetic 
equation are, until today, computationally extremely expensive and the need for 
numerical efficiency has not lost its actuality. 

Equations (2) and the relevant interaction and coupling coefficients have 
been derived in (Kozlov et al. 1987 [56]) in a general form without any 
assumptions about the quantities 2121 ,,, ρρhh . For synoptic motions in the real 
ocean, these equations can be greatly simplified based on the fact that the 
density of water masses in the Earth's oceans varies insignificantly. The vertical 
variation usually does not exceed a few ‰, and only in extremely strongly 
stratified basins such as the Baltic Sea reaches 1–2%. Therefore, for practical 
use it is allowed to disregard in Eqs. (2) the quantities of the order of 

( )( )221 / ρρρ −O , to replace 21 / ρρ  by 1 and 21 ρρ ,  by ( ) 2/21 ρρρ += . 
Using these approximations, we have (Kozlov et al. 1987 [56]): 
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In particular, we obtain .0~~~
100010001 ≡≡≡ III  This result reflects the well 

known fact that the interactions between two barotropic and one baroclinic 
wave in the ocean are much less intensive than other resonant interactions 
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(Jones, 1979 [42], Mirabel, 1985 [74], Kozlov et al. 1987 [56]). In numerical 
experiments we use nondimensional values 00 =a  and 11 =a . 
 
 

2.3. Reduction of collision integrals 
 
For practical numerical analysis of the evolution of Rossby waves in the Earth’s 
oceans the kinetic equation in question can be further simplified. Within the 
bounds of the 2-layer model of the Earth's ocean the natural boundary between 
the layers is the main thermocline, usually located on the depth of the order of 
1 km ( )1h . The mean depth 21 hh +  of the ocean is about 5 km. With the use of 
these values, several collision integrals in the kinetic equation are multiplied by 
the quantities 402 =Q ; 202 =P . In order to remove these relatively great 
factors a new time scale T  was introduced as follows: 

( ) 22
12 1/ QhhT ττ =+= . (5) 

Using this time scale, replacing 0F  by F  and 1F  by 1
2

0 FsG −= , and after some 
algebra we obtain 

( )011000
ˆˆ8 II

T
F απ +=

∂
∂

; ( ) 110111
2 ˆ16ˆ18 II

T
G παπ +−=

∂
∂

, 
(6) 

where 21 / hh=α  and the collision integrals are modified in a straightforward 
manner. The relevant analytical expressions are given in Papers I and VII. 

It can be shown that the Eqs. (6) have the same conservation laws as the full 
kinetic equation (2) (Kozlov et al. 1987 [56]). Namely, wave systems described 
by Eqs. (6) conserve total energy E , enstrophy Y  and wave momentum L : 

( ) const=+= ∫ dkdlGFE α ;

( ) ( )[ ] const2
1

22
0

2 =+++=∫ dkdlGaFaY κακ ; 

( ) ( ) dkdllGlFL ∫ 







+=

κω
α

κω
rr

10

=const. 

 
(7) 

Also, the so-called H -theorem ∫ ≥= 0ln FGdkdl
dT
d

dT
dH

 holds. Equi-

valently the law of increase of the system entropy is valid for Eqs. (6). 
Therefore, this approximation maintains all the basic features of the full kinetic 
equation (2). 
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The direct use of four-dimensional collision integrals pmnÎ , taken over the 
infinite space of the wave vectors is inconvenient for numeric experiments. 
Since each collision integral contains three delta-functions, the factual 
integration is performed over a set of wave vectors lying at a certain curve and 
representing wave components, resonantly interacting with each other. The 
integral apparently can be reduced to a specific one-dimensional (1D) integral 
basically in the same way as the collision integral of the barotropic kinetic 
equation has been reduced to a 1D integral over a bounded segment (Reznik and 
Kozlov 1981 [95], Reznik and Soomere 1984a [98]). 

In Papers I and VII this philosophy and some relevant results from (Kozlov 
et al. [56]) are used in order to reduce Eqs. (6) to equivalent ones but allowing 
discretization in a more convenient manner. First, the almost trivial integration 
over 2k , 2l  is performed. After doing this, the new integration variables 0κ , ϕ′  
are introduced so that 

)( 02
1

1 κκκ
rrr

−= ; )( 02
1

2 κκκ
rrr

−−= , ),( 0κκϕ
rr

∠=′ , 00 κκ
rr

=  (8) 

In new variables the expression 012
pmnω  can be written as 

16/1012 −−= pmnpmnpmn NkPω , where 

042
cos

16
0

2
0

4
0

012
012

=+++=−= pmnpmnpmnpmn
pmn

pmn CBA
N

P κκκω
ϕκ

. 
 

The new integration variable 0κ  is determined as a positive solution of the 
equation ( ) 00 =κpmnP . As different from the barotropic kinetic equation where 

a unique 00 ≥κ  exists for each set of interacting waves, in the baroclinic case 
there may exist from 0 to 3 positive solutions of this equation. The described 
simplifications allow expressing Eqs. (6) as follows: 

011000 II
T
F α+=

∂
∂

; 110111 II
T
G

+=
∂
∂

. 
(9) 

Analytical expressions for the collision integrals in Eqs. (9) are given in Papers 
I, VII. The integrals 000I  and 111I  have no singularities and basically coincide 
with the collision integral of the kinetic equation for the barotropic Rossby 
waves. The integral 011I  has only integrable singularities and always converges 
(Soomere 1992a [109]). These singularities are avoided in the solver by a 
proper choice of the grid points in the numerical integration. 

The most complex problems arise in numerical representation of the integral 
110I . It generally has non-integrable singularities corresponding to the double 
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resonance conditions (Soomere 1992a, 1993 [109, 111]). Mathematically, these 
singularities correspond to the case when simultaneously 0012 =pmnω , 0012 =pmnκ  

and )()( 21 κωκω nm ∇=∇ . According to (Reznik 1984 [97]), the general 
conditions for validity of the kinetic equation are not satisfied in this case and 
the collision integral may diverge. Physically, the above conditions mean that 
resonantly interacting waves with the vectors 21,κκ

rr
 have also equal group 

velocities. Such a case is called double resonance and the relevant points 1κ
r

 - 
the double resonance points. In this case, an underlying hypothesis of the 
kinetic theory – the assumption of stochastic phases of the interacting waves 
(Hasselmann 1962 [33], Majda et al. 1997 [66]) – is violated. Indeed, wave 
groups with equal group velocities remain in contact for a long time. 

Baroclinic Rossby waves are one of the few wave systems where double 
resonance may have essential influence on the spectral evolution (Soomere 
1992a [109]). It can be shown that the double resonance points form a finite 
curve RS2  on the ( )lk, -plane (Soomere 1992a, 1993 [109, 111]). The fact that 
integral ∫ εRS

dldkI
2 110 , computed over some narrow ε -vicinity of RS2 , 

approaches zero when 0→ε  suggests that the inaccuracy made by excluding a 
certain narrow area nearby RS2  from the computations most probably will not 
distort essentially the evolution of the whole spectrum (Soomere 1993 [111]). In 
other words, although double resonance may locally distort the spectrum, its 
influence on the evolution of the whole system apparently is negligible. A 
rigorous proof of this fact was given by Amundsen and Benney (2000 [3]) for a 
particular case of 1D wave systems. Double resonance can generate a delta-like 
peak in the spectral space, but does not cause any huge amplification in the 
wave amplitudes (at least, in the 1D case). Thus it can be ignored as it causes 
some negligible error but probably has not substantial impact on the system 
behaviour. Although the general proof for multi-dimensional wave classes such 
as Rossby waves is still missing, the result obtained by Amundsen and Benney 
(2000 [3]) suggests that double resonance has a limited influence on the spectral 
evolution. Based on these results, the interaction of waves close to double 
resonance is simply neglected in the numerical solver. 
 
 

2.4. Resonance curves and double resonance 
 
The problem of detecting double resonance can be reduced to a purely 
geometric problem of topology of the sets of wave vectors, over which the 
integration in collision integrals is performed (Soomere 1992a [109]). This is 
the main reason of revisiting the classical studies of the properties of the set of 
vectors of waves, resonantly interacting with a given wave. The relevant studies 



 
 

35

have been performed starting from 1960s (Longuet-Higgins and Gill 1967 [65]), 
and lead to interesting nontrivial geometric problems. 

In the framework of the kinetic theory, the most intensive energy exchange 
of a given Rossby wave (either barotropic or baroclinic) with a wave vector κ

r
 

occurs when it interacts with waves, vectors of which 1κ
r

 and 2κ
r

 satisfy the 
resonance conditions  

0012

rr
=κ ; )()()( 21

012 κωκωκωω
rrr

nmppmn ++= =0 (10) 

together with the vector κ
r

. Here we assume that the waves with the wave 
vectors 21 ,, κκκ rrr

 represent the modes (either barotropic or baroclinic) with the 
numbers p, m and n, respectively. In the case of 2D waves and three-wave 
interactions, Eqs. (10) define three conditions for six components of wave 
vectors κ

r
, 1κ
r

 and 2κ
r

. If any two of these components, say, ),( lk=κ
r

, are 
given, Eqs. (10) define three conditions for the remaining four components of 
the wave vectors. 

These conditions generally define curves )( 111 κ
rGG = , )( 222 κ

rGG =  on 
the planes of wave vectors 1κ

r
 and 2κ

r
. These curves are called resonance 

curves for wave vectorκ
r

. The wave corresponding to vector κ
r

 can only 
exchange energy with waves, vectors of which lie on these curves. The 
appearance of the resonance curves is a critical issue in the numerical solver for 
the kinetic equation, because integration in the collision integrals is factually 
performed along these curves. 

In the case of barotropic Rossby waves the resonance curves for 1κ
r

 and 2κ
r

 
coincide, are usually smooth oval, egg-like or hourglass-shaped curves, and 
have two axes of symmetry (Longuet-Higgins and Gill 1967 [65]). They have a 
singularity only in the case of interactions with the zonal flow that are void 
anyway (Longuet-Higgins and Gill 1967 [65]). The concurrence of curves 1G  
and 2G  in the barotropic case (or, more generally, in the case of interactions of 
Rossby waves of belonging to the same mode) is not unexpected, because all 
waves satisfy the same dispersion relation which only depends on the Rossby 
deformation radius. These features allow essential reducing the amount of 
calculation in numerical evaluation of the barotropic collision integrals (Reznik 
and Kozlov 1981 [95], Reznik and Soomere 1984a [98]). 

In the case of a baroclinic ocean certain sets of interacting waves contain 
waves from different modes that satisfy different types of dispersion relations. 
Expression 012

pmnω  in this case is a sum of different expressions for the angular 
frequency for different modes (see Section 2.1). The expressions are similar to 
each other, but may contain different values of the Rossby radii. The most 
important outcome from this feature consists in the possibility of concentration 
of energy of different modes at different wavelengths that may lead to various 
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scenarios of evolution towards the equilibrium state (Soomere 1995, 1996 [112, 
113]).  

Further study of the resonance curves has been performed in (Jones 1979 
[42]) for the particular case of interaction of one barotropic wave with two 
baroclinic harmonics. The corresponding resonance curves for 1κ

r
 and 2κ

r
 also 

coincide and have two axes of symmetry; thus the reduction of the amount of 
calculations owing to these features is still possible. For certain combinations of 
the wave vectors and Rossby radii the resonance curves may contain singularity 
points. The situation is still favourable: all singularities arising in the collision 
integral 011I  are integrable. 

In a more general case of interactions of a baroclinic wave with one 
barotropic and one baroclinic component the latter waves satisfy different 
dispersion relations. Therefore, it is natural that resonance curves for 1κ

r
 and 2κ

r
 

do not coincide in this case (Papers I, VII), and that they generally have no axes 
of symmetry. Moreover, these curves may have singularity points 
corresponding to non-integrable singularities of collision integral 110I . 

Although the presence of singularities apparently does not essentially disturb 
the evolution of the spectrum as a whole (see above), it is mandatory to 
incorporate the information about geometry of the resonant curves into the 
solver in order to avoid these singularities. The results of the relevant studies 
that have been essentially used in the construction of the solver for the 
baroclinic kinetic equation have been reported on various conferences2. 

From representation (8) it follows that the resonant curves )( 111 κ
rGG = , 

)( 222 κ
rGG =  are always congruent, and can be obtained from each other via a 

rotation around the point κ
r

2
1− . This allows us without a loss of generality to 

consider only one curve, say, 1GG = . This curve only crosses the origin if 

nm aa = , i.e. in the symmetric cases analysed by Longuet-Higgins and Gill 
1967 [65] and Jones 1979 [42]. 

Double resonance occurs exclusively for the waves that have singularity 
points of the resonance curves (Soomere 1992a, 1993 [109, 111]). Indeed, for a 

                                                                          
 

2 T. Soomere and K. Rannat, On the resonance curves for Rossby waves in two-layer 
ocean, in IV USSR Conference “Contribution of young scientists and specialists 
towards solving contemporary problems of oceanology and hydrobiology”, 2, 47–48 
Sevastopol, 1989 (in Russian), T. Soomere and K. Rannat, On the spectral evolution of 
baroclinic Rossby waves, in III USSR Conference “Vortices and turbulence in the 
oceans”, Kaliningrad, 1990, 44 (in Russian), T. Soomere and K. Rannat, On the 
numerical investigation of the spectral evolution of baroclinic Rossby waves, in III 
USSR symposium “Fine structure and synoptic variability of seas and oceans”, Tallinn, 
1990, 146–147 (in Russian). 
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given κ
r

 the curves )( 111 κ
rGG = , )( 222 κ

rGG =  are differentiable everywhere 
except for the points 1κ

r
 or 2κ

r
, satisfying the condition 

0)()( 21 =∇−∇=∆ κωκω
rrrr

nm , (11) 

which is the condition of double resonance. The sets 21,, κκκ
rrr

, satisfying 
simultaneously Eqs. (10) and Eq. (11) are called double resonance triplets and 
the corresponding points of κr on the ( )lk, -plane - points of double resonance. 

This connection between the double resonance (equivalently, the validity of 
the kinetic equation) and the occurrence of singularity points of the resonance 
curves is valid for all wave systems with three-wave resonant interactions. On 
the one hand, this feature motivates further studies of the shape of the resonance 
curves for different wave classes for which the set of the double resonance 
points cannot be found explicitly. On the other hand, it greatly simplifies the 
classification of the topological shapes of the resonance curves and their 
possible singularities provided the set of double resonance point has been 
determined. Namely, a displacement of a wave vector κ

r
 causes only a smooth 

deformation of the resonance curve unless this vector passes through a point for 
which the resonance curve contains a singularity (Soomere 1992b [110]). 
 
 

2.5. Resonance curves for baroclinic Rossby waves 
 
The resonance curves and their singularities for baroclinic Rossby waves are 
presented on figures 2.5.1 and 2.5.2 for several combinations of the values of 

pa , ma , pa  and the wave vector κr . Figure 2.5.1 illustrates the shape of the 
resonant curves for interactions of a baroclinic wave with one barotropic and 
one baroclinic component in the case 1== mp aa , 0=na . The corresponding 
set of double resonant points consists of two branches in the neighbourhood of 
the l-axis. One branch of this curve crosses the l-axis at a certain point with 

0>l  whereas the other one goes through the origin. Together they form a 
fishhook-like curve in each quadrant of the ( )lk, -plane (Soomere 1992a [109]). 
The common point of the branches is a singularity point of the set of double 
resonant points, which is missed in the analysis in (Soomere 1992a [109]). 
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Figure 2.5.1. Resonance curves corresponding to wave vectors lying at the different 
points of the double resonance curve (the central panel) in the case 1== mp aa , 0=na . 
The position of the wave vector at the double resonance curve is shown using small 
filled circles. The small circles mark the separated singularity points of the double 
resonance curve (cases 2, 3 and 4). 
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Figure 2.5.2. Resonance curves for 5.02 =pa , 0.12 =ma , 6.02 =na . The position of the 
wave vector at the double resonance curve is shown using small filled circles. The small 
circles mark the single points of the resonance curves, corresponding to the points 1’, 
2’, 3’ at branch II of the double resonance curve and one-point resonance curves 
corresponding to points 1, 2, 3 at branch III of the double resonance curve. 
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The resonant curves for waves, vectors of which lie on the former branch of this 
curve, are hourglass-shaped (at points 2’, 3’, 4’) and contain a self-crossing 
point. The resonance curve for waves with vectors lying on the latter branch 
(points 1, 2 and 3) consists of a single point and a smooth egg-like curve. The 
resonance curve corresponding to the common point (5) of the branches 
contains a turning point. 

In a more general case nm aa ≠ , 0, >nm aa , mp aa ≤ , additional oval 
branch of the double resonance curve lies near the k-axis. The resonance curve 
corresponding to a wave vectors lying at this branch consists of a single point 
(Fig. 2.5.2). Resonance curves corresponding to waves, vectors of which lie at 
the above-described branches of the double resonance curve are qualitatively 
similar to the ones presented on Fig. 2.5.1. 
 
 

2.6. Numerical scheme: discretization and stability 
 
The numerical scheme used in Papers I and VII is an extension of an analogical 
scheme for the barotropic kinetic equation (Reznik and Soomere 1983, 1984a 
[96, 98]). The problem consists now in solving the Cauchy problem for the 
system of integro-differential equations (9) in the infinite domain. 

The functions F and G are calculated at the nodes of a rectangular grid 
covering the bounded region Ω  of the ( )lk, -plane. Collision integrals (which 
were reduced to certain 1D integrals over a bounded interval by introducing the 
polar coordinates 0κ , ϕ′  and by making use of the delta-functions, as described 
in the previous sections) are approximated by using the Gauss’ quadrature 
formula. The values of ( )1κ

rF , ( )2κ
rF , ( )1κ

rG , ( )2κ
rG  at points 1κ

r
, 2κ
r

, 
corresponding to the nodes of the Gauss’ formula but not coinciding with the 
grid points on the ( )lk, -plane, are found with the use of a double linear 
interpolation.  

The resulting system of ordinary differential equations with respect to 
spectra of the baroclinic and the barotropic modes at the grid points is not 
closed because in any finite region Ω  there exist waves, which interact with 
waves, vectors of which lie outside Ω . The simplest way to handle such 
interactions consists in setting both the energy spectra identically zero outside 
this domain. Physically, this is equivalent to the introduction of infinite 
viscosity outside of Ω . Since the energy spectrum of Rossby wave systems 
with finite energy must decay as ( )4, κoGF =  when ∞→κ , for a sufficiently 
large region Ω  the error introduced by this truncation is expected to be very 
small (cf. (Reznik and Soomere 1983, 1984a [96, 98]). 
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Another simple truncation scheme (also used in earlier studies) consists in 
complete ignoring of all interactions involving vectors lying outside Ω . This is 
equivalent to replacing the infinite region of integration in Eq. (10) by a finite 
region ( ) ( )21 κκ

rr
Ω×Ω . Although this method has less clear physical 

interpretation, it is more relevant to the goals of the study of free evolution of 
wave systems, because the conservation laws of the kinetic equation as well as 
the H-theorem exactly hold in this approximation. 

An important difference of the solver in question from the one for the 
barotropic case is that the integrands of 011I  and 110I  may contain singularities 
at the double resonance points. For integrable singularities, it was checked if the 
nodes of quadratic formula are located far enough from the singularity points of 
resonant curves. As discussed above, the presence of non-integrable singu-
larities apparently does not distort the spectral evolution much. The actual 
behaviour of the spectrum in the vicinity of the double resonance curve is 
neglected, and its values in the grid points very close to this curve are estimated 
with the use of a double linear interpolation on the basis of the values of spectra 
at adjacent points. 

The greatest difficulty in the development of the numerical scheme was the 
proper choice of the grid size, the interpolation method, the quadrature and the 
finite-difference representation of the time derivative, all of which together 
determine the operational effectiveness of the scheme. The listed parameters 
were optimized according to the demand that the rms. error of the calculations 
must be less than 1% per unit of slow time. 

Most of the calculations were carried out for a regular rectangular grid with 
97 points in the direction of the l-axis and 114 points in the direction of the  
k-axis, covering the region 4≤κ . The grid has a finer resolution in the vicinity 
of the l-axis (Fig. 2.6.1), because an intense concentration of energy in this area 
was detected both in earlier studies of the barotropic spectra as well as in 
preliminary experiments. 

In earlier studies, the collision integral was replaced by the Gauss’ 
quadrature formula with 24 nodes in each segment with a length of π. For the 
baroclinic kinetic equation, the integration interval is divided into subintervals 
with the length of 4/π  and the 6-node Gauss formula is used in each 
subinterval. The resulting system of ordinary differential equations was solved 
by using the predictor-corrector method. The 2nd order explicit Adams’ scheme 
is used as a predictor and the 3rd order implicit Adams’ formula as a corrector. 

The total energy was normalized to 1=E  at 0=T . A permanent check 
was made on the proper operation of the scheme from the behaviour of the 
conservation integrals and the law of increasing in total entropy (Papers I, VII). 
The identity 0≡L  (Eq. (7)) is maintained numerically, because all the initial 
spectra are symmetrical with respect to both the co-ordinate axes. Typically, the 
total energy E  alters less than by 1% per time unit. At the beginning of most of 
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the runs described in this thesis as well as in the further studies with the use of 
this solver (Soomere 1995, 1996 [112, 113]), the energy alteration rate dTdE  
is approximately 0.3% per time unit and somewhat increases in their final 
phases (Fig. 2.6.2). Also the value for H  (entropy) was increasing 
monotonically. 

 

 
 

Figure 2.6.1. The computational grid. 
 
The system enstrophy Y is more sensitive to computational errors because of the 
factor 22

pa+κ  in its spectral representation. Since the spectra are evidently 
most distorted near the boundary of the computational area, the enstrophy of 
shorter waves may be computed relatively inexactly. Indeed, the total enstrophy 
usually alters by 1–2% per time unit. Its alteration rate often increases in the 
final phases of evolution, achieving in extreme cases values of dTdY Y1−  up 

to 0.04–0.05. Thus the variation of both the constraints is quite satisfactory. As 
the Adams scheme conserves both the energy and the enstrophy, their behaviour 
indicates that with time the total accuracy of the quadrature and the 
interpolation procedures decreases to some extent. 

Another property that indirectly permits judging the operational correctness 
of the scheme in the barotropic case is the total spectral width (Reznik and 
Soomere 1984a [98]). Generally, nonlinearity destroys sharp spectral peaks and 
works towards widening the total spectrum with respect to a certain wave 
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number *k . The relevant hypothesis is called defocusing or spreading 
assumption (Merilees and Warn 1975 [70]). For the barotropic case this 
assumption is ( )[ ] 021 >−∫− dTdldkFdE cκκ . Here ∫−= dldkFEc κκ 1  is 
the average modulus (mean wave number) of the wave vector. 

 
 

 
 
Figure 2.6.2. Evolution of the total energy E and enstrophy Y for the Rossby wave field 

with initial conditions ( ) ( ) ( )[ ] )exp(120,0, 212/3 κκαπκκ −+==
−rr

GF , 2.0=α . 
 
 
For inviscid nonforced 2D flows, the spreading assumption is equivalent to 

0<dTd cκ , i.e. to the scale-increasing process (Merilees and Warn 1975 
[70]). The effect of spectral widening is caused by the nonlinearity, which is 
supposed to be small in the kinetic theory. Yet in barotropic experiments this 
effect was observed in all cases in spite of the incessant generation of certain 
spectral peaks (Reznik and Soomere 1984a [98]). 

Stratified motion possesses an additional degree of freedom and the 
defocusing and the scale-increasing processes are not necessarily active. For  
2-layer flows the relevant spreading assumption (Marshall 1986 [67]) reads 

( ) ( )[ ] 02
1

2
0 >−+−∫ dldkGF

dT
d

cc κκακκ , where 0cκ , 1cκ  are the mean 

wave numbers of the barotropic and the baroclinic mode, respectively. This 
inequality does not yield a decrease in the mean wave number. For example, it 
is shown in (Soomere 1996 [113]) that the mean wave number of a 2-layer beta-
plane flow must decrease only if the baroclinic energy increases. For the 
described reasons the temporal behaviour of the total spectral width is not used 
as an indicator of the correctness of computations. 
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2.7. Basic features of spectral evolution 
 
Spectral evolution of weakly nonlinear Rossby wave systems is studied based 
on numerical integration of a large number of various initial spectra. The initial 
energy distributions are proportional to ( )2exp κκ − . Additionally to isotropic 
spectra, predominantly zonal motion systems were modelled with the use of the 
‘spreading’ factor ϕ4sin . An analogous factor ϕ4cos  was used to simulate 
initially mostly meridional motion systems. The relevant maximum of energy 
spectra in Figs. 2.7.1, 2.7.2 nearby k-axis corresponds to nearly meridional flow 
and the maximum nearby l-axis corresponds to the nearly zonal flow. 

Integration was usually performed until the total intensity of interactions 
( ) dkdlTGTFI ∫ ∂∂+∂∂= // α  decreases at least ten times compared with 

its maximum value. This quantity is expected to fully decay for systems in 
thermodynamical equilibrium. Its substantial decrease during the computations 
suggests that the computed final states apparently reveal the basic features of 
the thermodynamically equilibrated state(s). 

Typical examples of spectral evolution of certain initial distributions of 
general interest have been discussed in Papers I and VII. Paper VII considers 
evolution of anisotropic spectra ( ) ϕκκκ 42

1 sin)exp(0, −= AF
r

, 
( ) ϕκκκ 42

2 sin)exp(0, −= AG
r

 that represent a system of synoptic motions 
with predominating zonal component of both the modes. This case was chosen, 
because evolution of the corresponding purely barotropic wave system showed 
the most interesting behaviour. Paper I discusses the case of isotropic initial 
spectra ( ) )exp(0, 2

3 κκκ −= AF r
; ( ) )exp(0, 2

4 κκκ −= AG
r

. The energy 
balance between the modes follows the ratio of the layer’s thicknesses and the 
coefficients 41 AA K  are chosen so that the total energy 1=E . Further analysis 
of spectral evolution of different combinations of initial spectra has been 
performed with the use of the solver in question and with supercomputers of the 
Deutsche Klimarechenzentrum in the middle of the 1990s (Soomere 1995, 1996 
[112, 113]). 

Behaviour of both the spectra and their time derivatives (Fig. 2.7.1, 2.7.2) is 
important in understanding the energy exchange processes. Examination of 
fields of TF ∂∂ / and TG ∂∂ /  allows determining of areas of energy inflow 
and outflow (marked with ‘+’ and ‘-‘, respectively). Configuration of these 
areas can help to establish the basic tendencies of energy redistribution. 

In the calculations of the initially nearly zonal flow a complex pattern of 
energy exchange occurs. Most of the details of the evolution of the barotropic 
spectrum and its derivative resemble those of the pure barotropic case (Reznik 
and Soomere, 1984a [98]).  
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There are two areas of energy inflow I, III, placed near the l- and k-axis, 
respectively, and two areas of energy outflow II, IV. The absolute values 

TF ∂∂ /  in area IV are at least of an order smaller than the analogous values in 
area II, and area IV does not play any essential role in the total energy 
exchange. The maximum values of TF ∂∂ /  in relatively narrow inflow area I 
are much greater than in area III, but the total amount of inflow is greater in 
area III. 

 

 
Figure 2.7.1. Temporal evolution of energy spectrum of the barotropic mode F (left) 
and its time derivative TF ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) ( )[ ] ϕκκαπκακ 4212/3 sin)exp(13160,0, −+==
−rr

GF . The main isolines (solid 
lines) are plotted from 0.1 with a step of 0.1 for F and from ±0.05 with a step of 0.05 for 

TF ∂∂ / . The dotted line corresponds to 0/ =∂∂ TF . Area 2,0 ≤≤ lk  is 
represented in each panel. 
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Physically, there exist two main directions of energy redistribution. A spectrally 
narrow almost-zonal flow with 1~l  is generated and an almost-meridional 
flow with 1~k  is supported to some extent. 
 

 
 
Figure 2.7.2. Temporal evolution of energy spectrum of the barotropic mode G (left) 
and its time derivative TG ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) ( )[ ] ϕκκαπκακ 4212/3 sin)exp(13160,0, −+==
−rr

GF . The main isolines 
(solid lines) are plotted from 0.1 with a step of 0.1 for G and from ±0.05 with a step of 
0.05 for TG ∂∂ / . The dotted line corresponds to 0/ =∂∂ TG . Area 2,0 ≤≤ lk  is 
represented in each panel. 
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In the course of time the values of TF ∂∂ / decrease all over the wave vector 
plane. Areas I, III decrease as well and a new inflow area V remote from the 
origin, arises from the falling of area III into two parts. Area II increases to 
some extent and stretches out in the direction of the l-axis. However, the later 
changes of the TF ∂∂ /  field have a negligible influence on the spectral 
evolution, which is mostly determined by areas of intensive inflow I, III and 
outflow II.The described processes result in a narrow and high spectral peak of 
the barotropic mode in the very close vicinity of the l-axis. We call it a zonal 
peak. An interesting peculiarity of the evolution of zonal peak is that, after some 
time, an “erosion” process of its upper right slope becomes evident, a typical 
phenomenon in all the experiments. It additionally enhances the steepness of the 
right-hand slope of the peak, in this way acting towards adjusting it towards a 
delta-like hump. Finally, the zonal peak appears to be quite a modest at 1>κ , 
but extremely sharp and high at 7.06.0 −≈κ . Remote from the l-axis, the 
spectrum F apparently tends to an isotropic state. 

At the outset, the evolution of the baroclinic mode is characterized by an 
intense energy inflow at 1≤l  (area I of distribution of TG ∂∂ / ) and an energy 
outflow at 1≥l  (area II). Energy exchange in areas III and IV is negligible. 
Area I has two inflow maxima, corresponding to the reinforcement of both the 
nearly zonal flow and the mostly meridional disturbances. The former process, 
however, rapidly ceases and the baroclinic zonal flow is suppressed starting 
from 5.0≈T . Differently from the evolution of the barotropic mode, the latter 
process remains active during the whole experiment. The resulting spectrum is 
nearly isotropic, whereby the isotropization process acts much faster than in the 
barotropic case. Baroclinic energy mostly flows along the l-axis, while both in 
the 1-layer experiment and in the case of the barotropic mode energy exchange 
mainly occurs between waves of nearly equal length. 

The temporal evolution of other initial spectra and their time derivatives in 
all the runs with comparable initial energies of both the modes shows similar 
features to the described ones. The fields of derivatives TF ∂∂ /  and TG ∂∂ /  
always initially reveal a characteristic two-lobed (or three-lobed, in case of 
initial zonal anisotropy only) structure with an extensive inflow area close to the 
l-axis (cf. Fig. 2.7.3–2.7.4). To the end of simulations, energy is mostly 
transferred into the barotropic nearly zonal flow and (occasionally) into large-
scale baroclinic mostly meridional motion components. 
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Figure 2.7.3. Temporal evolution of energy spectrum of the barotropic mode F (left) 
and its time derivative TF ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) ( )[ ] )exp(cos120,0, 2412/3 κϕκαπκακ −+==
−rr

GF . The main isolines (solid 
lines) are plotted from 0.2 with a step of 0.2 for F and from ±0.1 with a step of 0.1 for 

TF ∂∂ / . The dotted line corresponds to 0/ =∂∂ TF . Area 2,0 ≤≤ lk  is 
represented in each panel. 
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Figure 2.7.4. Temporal evolution of energy spectrum of the barotropic mode G (left) 
and its time derivative TG ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) ( )[ ] ϕκκαπκακ 4212/3 cos)exp(120,0, −+==
−rr

GF . The main isolines 
(solid lines) are plotted from 0.1 with a step of 0.1 for G. The dotted line corresponds to 

0/ =∂∂ TG . Area 2,0 ≤≤ lk  is represented in each panel. 
 
 
The temporal evolution of the barotropic mode always is similar to that in the 
barotropic experiments (Reznik and Soomere, 1984a,b [98, 99]; Reznik 1986 
[100]) and reveals a coexistence of two basic tendencies. A portion of the 
energy is transferred into a well-defined spectral peak near the l-axis while 
remote from this axis the spectrum tends to become isotropic. As a result, a 
strong peak in the spectrum of the barotropic mode F near this axis emerges. 
This peak is quite narrow near to the origin, widens to some extent at medium 
wavenumbers and has a general form of an elongated hogback with abrupt 
slopes near to the origin and with relatively gently sloping end at 1≈κ . It has a 
characteristic enlargement at 7.0≈κ . This form is universal within all 
experiments described here and in the following studies. It is interesting to 
notice that the evolution within the 2-layer model leads to a much more intense 
spectral peak of the barotropic mode, which is concentrated in a somewhat 
narrower vicinity of the l-axis compared to the purely barotropic case (Reznik, 
Soomere 1984a,b [98, 99], Reznik 1986 [100]). 
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Typically, the baroclinic spectrum soon takes a practically isotropic shape 
and preserves it until the end of experiments. This is a deeply interesting 
feature: the resonant interactions always form a powerful spectrally narrow 
zonal peak of the barotropic flow but usually do not enhance the zonal 
component of the baroclinic mode. In specific cases some increase of zonal 
component of the baroclinic motion takes place, but compared to barotropic 
mode F  the relative height of the peak for G  nearby the l-axis is much lower. 
Therefore, in most cases the weakly nonlinear interactions of Rossby waves in 
the 2-layer ocean lead to the generation of mostly barotropic nearly zonal flow. 

Most of the initial spectra analysed above and in (Soomere 1995, 1996 [112, 
113]) have the energy maximum at a fixed wavenumber 7.0≈κ . The spectral 
maximum of the barotropic spectrum emerges at a comparable wavenumber 
suggesting that the energy exchange mostly occurs among waves of comparable 
length (cf. Reznik 1986 [100]). In order to make clear whether the location of 
the spectral maximum is determined by the shape of the initial spectra, a series 
of experiments was performed with initial spectra with maxima located at much 
smaller wavelengths. 

Figures 2.7.5 and 2.7.6 present the initial and the final energy distributions 
with experiments with the initial spectra 

( ) ( ) [ ]2)5.0(exp)5.0(~0,0, −−−= κκκκ
rr

GF . The energy maximum in the 

relevant motions is located at 2.15.05.0 ≈+=κ . Initially the spectral peaks 
are formed at somewhat smaller wavelengths (larger κ ) and are somewhat 
wider than in the above-described experiments. However, in the course of time 
energy is intensely transferred to larger scales, and the spectral maximums are 
also gradually shifted closer to the origin. These results suggest that to the basic 
features of spectral evolution insignificantly depend on the initial location of the 
maximum at the ( )lk, -plane, and that a dependence of the final result of the 
evolution on the location of the initial spectral maximum of the initial 
conditions is unlikely. 
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Figure 2.7.5. Temporal evolution of energy spectrum of the barotropic mode F (left) 
and its time derivative TF ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) [ ]2)5.0(exp)5.0(~0,0, −−−= κκκκ
rr

GF  for 5.0>κ , ( ) ( ) 00,0, ≡= κκ
rr

GF  
for 5.0≤κ . The spectra are normalised so that the total energy 1=E . The main 
isolines (solid lines) are plotted from 0.025 with a step of 0.025 for F and from ±0.02 
with a step of 0.02 for TF ∂∂ / . The dotted line corresponds to 0/ =∂∂ TF . Area 

0.2,0 ≤≤ lk  is represented in each panel. 
 
 
The described and several other experiments, made with the use of largely 
different types of initial spectra, have demonstrated that the following main 
tendencies of the spectral evolution evidently are universal: 

(i) in the course of time intensive almost-zonal nearly barotropic flow arises. 
It is remarkable that the peak in the spectrum of the barotropic mode is 
significantly higher and located closer to the l-axis than in the pure barotropic 
case; 

(ii) although the zonal component of baroclinic motions increases to some 
extent, the relative height of the spectral peak near the l-axis still remains 
essentially lower than the analogous peak in the spectrum of the barotropic 
mode. Therefore, the almost-zonal flow generated by weakly nonlinear 
interactions of Rossby waves often should be practically barotropic; 

(iii) in areas remote from the k-axis the spectra of the both modes become 
almost isotropic; 
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(iv) during all the numerical experiments the full spectrum of motion retains 
essentially its baroclinic nature. 

 

 
 
Figure 2.7.6. Temporal evolution of energy spectrum of the barotropic mode G (left) 
and its time derivative TG ∂∂ /  (right) in experiments with initial conditions 

( ) ( ) [ ]2)5.0(exp)5.0(~0,0, −−−= κκκκ
rr

GF  for 5.0>κ , ( ) ( ) 00,0, ≡= κκ
rr

GF  
for 5.0≤κ . The spectra are normalised so that the total energy 1=E . The main 
isolines (solid lines) are plotted from 0.025 with a step of 0.025 for G and from ±0.05 
with a step of 0.05 for TG ∂∂ / . The dotted line corresponds to 0/ =∂∂ TG . Area 

2,0 ≤≤ lk  is represented in each panel. 
 
 
The first feature suggests that the presence of the baroclinic mode acts as a 
catalyst in generation of large-scale almost-zonal barotropic flows in the oceans, 
a feature that has been confirmed by later research (Soomere 1995, 1996 [112, 
113]). A conclusion of direct practical interest is that one may anticipate more 
intensive barotropic zonal currents in these areas of the ocean, in which well-
defined stratification is present. This feature may partially explain the high 
persistency of a jet stream in certain layers of the Gulf of Finland (Andrejev et 
al. 2004a, b [4, 5]) where they mostly follow the bottom isolines. The two latter 
features suggest that the effect of barotropization of synoptic flows observed in 
oceans occurs mainly due to the formation of intensive large-scale almost-zonal 
flows; however, the field of relatively small-scale synoptic motions may retain a 
certain vertical structure. 
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Another important conclusion is that the resulting wave system only weakly 
depends on the choice of initial functions. This is not unexpected, because the 
wave systems described by the kinetic equation should evolve towards a 
thermodynamically equilibrated state. The resulting distributions of F and G are 
expected to reveal some information about the final state of evolution. The 
barotropic component of the latter apparently contains a delta-like part while the 
baroclinic one evidently has an isotropic shape. Some aspects of further 
evolution scenarios of Rossby wave systems to the equilibrium state have been 
discussed in (Soomere 1995, 1996 [112, 113]). 
 
 

2.8. Layer formation in stratified medium 
 
In nature, the air in the atmosphere and the water in the oceans, seas and lakes is 
usually stratified. The basic source of stratification in the ocean is the energy 
submitted to the ocean by the Sun. Including of stratification into models of 
geophysical flows usually drastically increases their complexity. The analysis 
performed in this Chapter shows that this consequence can be partially avoided 
if the stratification becomes evident in the form of well-defined layers of 
practically homogeneous fluid. This is frequently the case in the real ocean. In 
this case, assumptions made, e.g. in the theory of Rossby waves in the vertically 
homogeneous ocean are reasonable within each layer. Although interactions of 
motions within different layers make the layered model more complex, a multi-
layer model is substantially simpler than full three-dimensional models. For 
example, the two-layer model and the relevant kinetic equation are applicable in 
cases when the vertical density distribution in the ocean (atmosphere) has one 
well-defined layer of large density gradients, and the rest of the medium is 
much more weakly stratified. Its generalisations can be applied also in cases 
when the water masses have more complex structure (see Section 1.4). 

The stratification of a water column frequently becomes evident in the form 
of a series of homogeneous layers alternating with high gradient interfaces. 
Such a vertical structure is known as a stepped staircase or a stepwise 
thermohaline structure. Steplike vertical profiles with the typical height of the 
steps from a few centimetres to tens and hundreds of meters occur in many 
regions of the world’s oceans, including tropical (Caribbean, Schmitt et al. 1987 
[105]), arctic (Weddell Sea, Muench et al. 1990 [76]), and mid-latitude 
(Tyrrhenian Sea in the Mediterranean, Zodiatis et al. 1996 [147]) waters. A 
large number of experiments in the Red Sea (Swallow and Crease 1965 [129]), 
in the Arctic Ocean (Neal et al. 1969 [77]), the North Atlantic, in the Canada 
Basin (Padman and Dillon 1989 [81]), etc. suggest that the staircase-like 
structures are a common feature in the ocean. Layered structures can been found 
in some lakes also (e.g. lake Nyos in Cameroon where the contribution of CO2 
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to the stratification is much larger than that of temperature and dissolved salts, 
Schmid et al., 2004 [104]). 

There exist a large number of studies of formation of a staircase-like 
structure. Its mathematical modelling both in general fluid mechanics and in 
oceanography is supported by many laboratory experiments (Turner 1968 [133], 
Linden 1979 [63], Fernando 1987, 1989 [21, 22], among others) and with a 
large amount of experimental data. Many aspects of the origin of such a 
structure, in spite of long history of its studies, are still unclear. 

There exist several mechanisms that can produce layered structures similar 
to those observed in the nature. A field of turbulence in a strongly stratified 
fluid, far from boundaries, being supported by a Reynolds stress and having a 
non-zero vertical flux of buoyancy or density, may be unstable to variations in 
the vertical density gradient (Phillips 1972 [91]). The vertical diffusion of salt 
(or heat) is a strongly nonlinear process, and the relevant non-linear differential 
equation has initially unstable solutions under certain conditions. The properties 
of such solutions have been analysed in (Posmentier 1977 [93]) who 
numerically demonstrated the possibility of development of initially smooth 
salinity profiles into staircase-like structures. Thermohaline intrusions may also 
create such structures (Feodorov 1976 [23], Walsh and Ruddick 1998 [139]). 
Even a simple one-dimensional numerical model demonstrates how intrusions 
generate inversions3 in temperature and/or salinity. The medium seems to 
evolve toward an equilibrium state characterised by a chain of “convecting” 
(and thus well mixed) layers separated by interfaces containing large gradients. 
The resulting structure thus has staircase-like vertical profiles of temperature, 
salinity and/or density. 

A well-defined layered structure means that large gradients appear in some 
areas below called interfaces. In extreme cases, the behaviour of the derivatives 
of the temperature, salinity and/or density at the interface(s) resembles delta-
like peaks. This feature makes the numerical studies of the formation of steplike 
stratification a particularly difficult problem. On the one hand, the onset of 
numerical instability may be interpreted as a (non-realistic) layer in the 
modelling process. On the other hand, too high numerical viscosity can arti-
ficially damp the layer formation. The described problem resembles well-known 
difficulties appearing in numerical solving of stiff systems characterised by 
extensive variation of the magnitude of different terms in the equations to be 
solved. The stability and reliability of the numerical scheme is a central 
prerequisite in the relevant studies. 

                                                                          
 

3 A reversal of the normal behaviour of the density in the ocean, in which a layer of 
more dense water is overlaid by a less dense layer. Under normal conditions the density 
usually increases with depth. 
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Paper IV and some related conference papers4 focus on a specific 
mechanism of the formation of the layered structure, triggered by the joint 
influence of the double-diffusion and the turbulent mixing. The double-
diffusion is a phenomenon that occurs in fluids with two constituents of greatly 
different molecular diffusivities (e.g. Ruddick and Gargett 2003 [102]). In the 
oceans, such constituents, which also affect the water density, are the 
temperature and salinity. The molecular diffusivity of temperature is by two 
orders of magnitude larger than the molecular diffusivity of salinity. 
Equivalently, on the molecular scale heat diffuses much more rapidly than salt. 

There exist two options of initially stable stratification for two water masses 
with different temperature and salinity above each other. First, the overall 
stratification is stable when the upper layer is cooler but much less saline 
compared to warmer and more salty lower layer. The interface is unstable with 
respect to the highly diffusive constituent (i.e. heat) and the changes of water 
properties in its vicinity occur by the molecular diffusion of both heat and salt. 
The molecular diffusion causes density inversions (see Fig. 2.9.2) that lead to 
the corresponding release of potential energy within the inversion region and 
initiate the mixing process and formation of new (more or less uniformly 
mixed) layers. An interface of this kind is known as a diffusive layering (DL) 
interface. 

Second, the upper layer may be more saline but warm enough compared to 
the relatively cool and somewhat fresher lower layer. The interface is unstable 
with respect to a substance of lower diffusion (i.e. salt) and long, narrow finger-
like convection cells with rising and sinking fluid motions that carry buoyancy 
flux will be created. These interfaces are called (salt) finger (SF) interfaces 
(Turner 1973 [134], Turner 1995 [135]; Feodorov 1976 [23], Fernando 1989 
[22]). 

Many oceanographers expect that the double-diffusion has major effects on 
oceanic water masses and circulation. Although the double-diffusion becomes 
evident mostly in small scales and the resulting vertical structure of water 
masses may be not directly applicable in the analysis of large-scale processes 
such as the Rossby waves, several leading experts have the opinion that 
“double-diffusive fluxes produce significant effects on various large-scale 
features of the ocean” (Ruddick and Gargett 2003 [102]). 

 
 

                                                                          
 

4 Rannat, K., Heinloo, J., 1999. The staircase-like vertical structure of hydrophysical 
fields: the model and numerical scenarios. Paper presented at the 24th EGS General 
Assembly, The Hague, 19–23 April 1999; Rannat, K., Heinloo, J., 1999. Model of 
vertical transport in stratified turbulent environment, considered as rotationally 
isotropic. In: Fourth workshop on physical processes in natural waters, Roosta, 13–17 
Sept. 1999, Estonia, EMI Report Series, 10, 1999, 15–18.  
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2.9. Modelling of layer formation 
 
The object of study in Paper IV is a one-dimensional model that reflects several 
aspects of formation of the staircase-like vertical structure of the density field 
owing to the joint influence of the double-diffusion (called DD below) and 
turbulent mixing. The central problem is the choice of the numerical scheme 
and its parameters for a reliable description of the layer formation. The basic 
result consists in establishing the range of parameters for which the numerical 
scheme is stable. A series of preliminary numerical experiments demonstrating 
certain features of layer formation were also performed. 

The model is developed by Dr. Jaak Heinloo in the framework of the 
analysis of the turbulent mixing by means of the theory of rotationally 
anisotropic turbulence (RAT, Heinloo 1984, 2004 [37, 38]). It is an extension of 
the model used in (Võsumaa and Heinloo 1996 [138]) and embraces both DL 
and SF regimes. The model is related to the models of Phillips (1972) 
explaining the layering process as a result of instability of a turbulence field 
with respect to variations of the vertical density gradient and to the model of 
Posmentier (1977) stressing the essentiality of transport processes of salt and 
heat. 

The quantities under consideration are the nondimensional turbulent energy 
( )tzK , , salinity ( )tzS , , temperature ( )tzT ,  and density ( )tz,ρ . Assuming 

that the state equation )1(~)1(~1 −+−−= ST βαρ  is linear, the model 
equations read (Paper IV): 
 

















∂
∂

−
∂
∂

+−







∂
∂

∂
∂

=
∂
∂

z
T

z
SrbK

z
KK

z
b

t
K αβ1 , 

(12) 

( ) 





∂
∂

+
∂
∂

=
∂
∂

z
TbKa

zt
T

, 
(13) 

( ) 





∂
∂

+
∂
∂

=
∂
∂

z
SbKd

zt
S

, 
(14) 

where 2
00

2 −= zKctb K  has the meaning of the coefficient of turbulent diffusion, 
t  is nondimensional time, Kt  and 0z  are the characteristic time and vertical 
scale, respectively, 0K  is the characteristic scale of the turbulent energy, 

1
00
−= Kgzr , 2

0
−= ztka K

mol
T , 2

0
−= ztkd K

mol
S , mol

Tk  and mol
Sk  are the coeffi-

cients of molecular diffusion of heat and salt, respectively, 1
00

~ −= ραα T , 
1

00
~ −= ρββ S , and α  and β  are the coefficients of thermal expansion and 

salinity contraction, respectively. The model thus contains five physical 
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constants α , β , mol
Tk , mol

Sk and g . The derivation and discussion of the 
equations is presented in Paper IV and the value of the semi-empirical constant 

05.0=c  is suggested based on theoretical considerations of (Simpson et al. 
1996 [108]). 

The qualitative evolution of the vertical profiles of temperature, salinity, 
kinetic energy and density in the framework of Eqs. (12-14) is sketched on 
Figure 2.9.1. If at the outset the water density monotonously increases with the 
depth, the factor in square brackets at the right-hand side of Eq. (12) 
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The turbulent energy is thus damped by the stable stratification and the 
molecular diffusion described by Eqs. (13,14) dominates in the system. It 
generally results in changes of local gradients of S  and T , and if it is intense 
enough, it may change the sign of B  for some range of depths after some time. 
The situation 0<B  corresponds to a strong density inversion (unstable 
stratification) in which 0>−≈∂∂ BKtK  and the turbulent energy fast 
increases (Eq. (12)). In the DL case, one layer with density inversion is usually 
formed above and another below the original interface (Figure 2.9.1a). In the SF 
case (Figure 2.9.1b) only one area of density inversion, which embraces the 
original interface area, is occasionally formed. 
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a)  

 
b)

    
 
Figure 2.9.1. Evolution of the vertical profiles of temperature T, salinity S, density ρ , 
and turbulent kinetic energy K in the case of (a) the diffusive layering (DL) interface 
and (b) the salt finger (SF) -type interface. 
 
 
The increase of K may resemble numerical instability but in fact it only reflects 
a rapid displacement (equivalently, intense mixing) of water masses in a certain 
sublayer. This process is accompanied by a fast decrease of zT ∂∂  and zS ∂∂  
in this sublayer owing to Eqs. (13, 14). The quantity B  soon becomes positive 
again and Eq. (12) implies a fast decrease of the turbulent energy in the layer 
where 0>B . The whole process can be interpreted as forming of a new mixed 
layer in the vicinity of the former interface. This layer is eventually separated 
from over- and underlying regions by new interfaces where the buoyancy 
gradients are big enough to suppress the turbulence energy. 

This process may have a recurrent nature. After the turbulent energy has 
drastically decreased at the new interfaces, the double diffusion apparently 
becomes the governing process again and starts to initiate new inversions in the 
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density profile at the borders of the new mixed layer. Under favourable 
conditions the number of mixed layers will grow and the vertical profiles of ρ , 
T and S may obtain a staircase-like shape. 

The basic steps in establishing of what kind of numerical schemes are 
reasonable (numerically efficient and stable) for representing the layer-forming 
process governed by Eqs. (12–14) are described in Paper IV. The advantages of 
an explicit method, used in (Võsumaa and Heinloo 1996 [138]), consist in an 
almost trivial matrix inversion and a minimal number of arithmetic operations at 
each time step. They are counterbalanced by the stability and convergence 
conditions which impose severe restrictions on the time step. For that reason, 
we have used the implicit iterative method as recommended in (Stoer and 
Burlish 1993 [125]). 

The stability criterion of discretized Eqs. (12–14) is studied in Paper IV for 
computations with the use of a regular time-space grid, with the time step τ∆  
and the vertical step h∆ . Its derivation is quite cumbersome but still 
straightforward. For the realistic maximum values of the turbulent kinetic 
energy and for typical values of temperature and salinity in the ocean, the ratio 
( ) 01.02 >∆∆ τh  must hold. 

A series of preliminary numerical experiments suggests that the layering 
process is only effective for a certain set of the parameters. For their many 
realistic combinations the layer-formation mechanism did not become evident 
within a reasonable computation time. However, in several cases it led to quite 
fast forming of new layers and interfaces (Figures 2.9.2–2.9.4). The essence of 
the model requires that max0 bKad <<<<< , where maxK  denotes the maxi-
mum value of the turbulent energy. New layers only can be generated if the 
turbulent energy is initially nonzero; however, this is normally the case in 
natural conditions. The initial turbulent kinetic energy was set to constant 

)10()0,( 6−= OzK . The initial profiles )0,(zT  and )0,(zS  were chosen so that 
the fluid density varied linearly in the vertical direction but a thin interface layer 
with relatively large temperature and salinity gradients was located at the mid-
depth of the computational domain. 
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Figure 2.9.2. Temporal evolution of the vertical profile of water density.  
 
For the following values of the physical parameters 0003.0~ =α  1−K , 

0008.0~
=β  -1‰ , 7103.1 −×=mol

Tk  12 −sm , 9107.1 −×=mol
Sk  12 −sm , the 

molecular diffusion has generated inversion regions (represented by negative 
gradients of the density profile, Fig. 2.9.2), large enough to launch the turbulent 
mixing at t=100 s (Fig. 2.9.3). The resulting mixing process forms two new 
well-defined mixed layers by t=500 s. 
 

 
Figure 2.9.3. Temporal evolution of the vertical profile of the turbulent kinetic energy 
K . 
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The corresponding step-like structure can be identified also in salinity (Fig. 
2.9.4) and temperature profiles. 
 

 
Figure 2.9.4. Temporal evolution of the vertical profile of water salinity. 
 
 
The research in Paper IV and the presented numerical example serve as a first 
stage of the studies of the layer-generation mechanism described by Eqs. (12-
14). For a certain set of realistic initial conditions the layered density structure is 
jointly generated by double-diffusion and turbulent mixing within an 
appreciable time. However, we were not able to identify which sets of 
parameters are the most favourable for large-scale layer generation process. 

The experience with different sets of parameters and initial conditions 
suggests that the forming of such structures may have drastically different time 
scales in different regions, and that generally it is a long-term process. 
Validation of the relevant calculations against field or experimental data would 
be the next step for future research. Further studies are needed in order to 
establish what can be the thickness of the layers and how large can be the 
temperature, density and salinity jumps between the layers. The results obtained 
so far suggest that these studies require extensive computational efforts and are 
outside of the scope of this thesis. Research in this direction is clearly 
important, because as yet no modelling framework provides an integrated 
picture of DD-convection phenomena (Kerstein, 1999 [50]).  
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3. LONG WEAKLY NONLINEAR SURFACE WAVES 
 

3.1. Kinetic theory in surface wave modelling 
 
Many properties of nonlinear waves and their interactions have been studied in 
a most detailed manner for surface waves. These studies have a highly 
important practical output both in open sea where wind wave activity forms an 
important aspect of safety of marine transport and offshore structures, and in the 
coastal areas where wind waves are essential in many coastal engineering 
problems. In particular, the kinetic equation was first derived for surface waves 
by Hasselmann in 1962 [33]. Soon after this work, efforts towards spectral 
wave modelling were launched (The SWAMP Group 1985 [131], Komen et al. 
1994 [55]). 

The research on the properties of the surface-wave kinetic equation is much 
more complicated than in the case of Rossby waves because of (i) the 
complicated form of the dispersion relation for surface waves (which contains 
hyberbolic functions or, equivalently, a combination of exponents) and (ii) the 
occurrence of the 4-wave interaction. In particular, the analytical expressions 
for interaction coefficients for surface waves are extremely complicated 
(Krasitskii 1994 [57]). As a result, straightforward proofs of several properties 
of this equation as well as its numerical investigation are very complicated. The 
situation is largely the same today, and essential simplifications of the collision 
integrals are used in numerical wave models in order to obtain a reasonable 
performance (Komen et al. 1994 [55]). 

Both the definitions of weak nonlinearity discussed in Chapter 1 have an 
important role in this chapter. The calculation of energy exchange owing to 
weakly nonlinear resonant interactions is a basic constituent of contemporary 
wave models, most of which are based on the Hasselmann’s equation. One of 
such models, WAM cycle 4, has been used in studies of the wave climatology 
of the Baltic Sea and in the Tallinn Bay area (Soomere 2005 [121]). This and 
analogous wave models are based on specific solvers of the collision integral of 
the kinetic equation for surface waves. The difference from the studies 
described in Chapter 2 is that (i) realistic energy sources and sinks, and wave 
propagation is taken into account but (ii) only one wave mode is included into 
the equations. Numerical solving of the resulting forced-dissipative kinetic 
equation is out of the scope of this study, and the results concerning the wave 
regime in Tallinn Bay are taken from (Soomere 2005 [121]). 

One of the major topics in this chapter is the influence of nonlinearity on 
wave-induced processes in shallow areas. Linear and kinetic approaches are 
widely used for description of surface waves and their interactions provided the 
wave height is small compared to the wave length and water depth. However, 
relatively long and appreciably high waves in shallow water cannot be correctly 
described within the linear theory. Their shape is no more sinusoidal and more 
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elaborated wave theories must be applied. As different from weakly nonlinear 
interactions where waves are supposed to satisfy the linear dispersion relation 
and nonlinearity becomes evident after a long time, now nonlinearity is 
intrinsically present in the equations describing the wave evolution, and may 
substantially affect the wave shape and properties. 
 
 

3.2. Basic concepts of the linear surface wave theory 
 
The major generating force for sea waves is wind that acts on sea-air interface 
and optionally disturbs the calm water surface. The gravitation serves as the 
restoring force that together with the laws of fluid motion govern the further 
behaviour of the disturbances that in most cases behave in the wavelike manner. 
Wave theories – approximations to reality – well describe some phenomena on 
the water surface provided the assumptions made in their derivation are 
satisfied. The numerical models of wave motion are usually based on simplified 
governing equations and boundary conditions. Their numerical counterparts 
may cause additional restrictions for practical applications. Solving the wave 
propagation problem exactly, involving all physical processes with the relevant 
temporal and spatial scales is still practically impossible. 

The simplest surface wave theory is the so-called first-order, small-
amplitude wave theory, developed by Airy (1845 [1]) and known as the linear 
theory. Many engineering problems can be easily handled with reasonable 
accuracy by this theory (Dean and Dalrymple 2004 [17]). However, the theory 
obviously fails in the cases, for example, where the wave crests are higher 
above the mean water surface than the troughs are below of it. For such 
asymmetric waves as well as for many other cases, more elaborated approaches 
have to be used, all of which contain certain elements on nonlinearity.  

The simplest version of the linear theory of surface waves of appreciable 
length is based on a large number of assumptions: the fluid is homogeneous and 
incompressible ( const=ρ ); the motion is irrotational, surface tension, 
viscosity and Coriolis effect are neglected; air pressure at the water surface is 
uniform and constant; the seabed is horizontal and rigid, fixed boundary and 
vertical velocity at the bed is zero; wave amplitude is small and waves are 
periodic plane or long-crested (1D) entities that do not interact with any other 
wave motions, only normal forces are important, sharing forces are negligible. 
These assumptions imply that the wave motion is governed by the Laplace 
equation (that is linear) with linearised boundary conditions and that the 
waveform is invariant in time and space. 

The simplest surface wave of permanent form is a progressive linear wave 
propagating without experiencing any change in shape over a horizontal bottom. 
It is an inifite sequence of sinusoidal wave forms )cos(),( tkxatx ωη −=  that 
move horizontally over the water. Here x  and t  stand for the spatial coordinate 
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and time, respectively. The linear wave form only depends the wave amplitude 
a  and on the combination x  and t  called phase and defined as txk ω−=Θ , 
where Lk /2π=  is the wave number, L  is the wave length, Tπω 2=  is the 
angular frequency and T  is the wave period. The phase velocity fc  (also called 
celerity) is the speed at which a wave form propagates – the speed of an 
individual wave in a group. The distance travelled by a wave during one period 
is equal to one wavelength, consequently, kTLc f ω== . The wave energy 

propagates with the group velocity kcg ∂∂= ω . The energy E  of a linear 
wave is porportional to the wave amplitude squared. This quantity is usually 
defined as the energy density per unit area or volume, averaged over the wave 
period. Its flux (wave power, also interpreted as the density of energy flux) is 

gEcP =  and characterises the bulk power carried by the wave per unit of 
length of the wave crest (e.g., W/m). This description is generic for any kind of 
linear waves. The particular wave class is determined by the relation between 
the wave period (or angular frequency ω ) and length (or wave number k ). 
This relation is called dispersion relation and it may involve several medium-
specific parameters. An important feature of linear waves is that their amplitude 
is independent on other wave properties. 

The dispersion relation for linear surface waves is khgk tanh=ω , where 
g  is the acceleration due to gravity and h  is the water depth. Their height is 

defined as aH 2=  and their energy is 2
2
1 gaE ρ= . The dispersion relation is 

frequently given in terms of L  and T  as ( ) ( )112 2tanh2 −−= hLgTL ππ . The 
hyperbolic tangent approaches to 1 for its large arguments and is approximately 
equal to its argument if the latter is small. Two practically useful 
approximations can be made based on this feature: 

(i) Deep-water approximation is valid if 1>>kh  and 1tanh ≈kh , that is, if 
the water depth Lh >>  is much greater than the wave length L . The deep-
water dispersion relation is gk=2ω , while the phase and group velocities can 

be expressed as kgc f /= ω/g=  and )2/( ωfg cc = 2/fc= , and the wave 

length π2/2gTL = . This approximation is usually used when 4/Lh > . 
(ii) Shallow-water approximation is valid if 1<<kh  and khkh ≈tanh , that 

is, the water depth Lh<<  is much less than the wavelength. The dispersion 
relation simplifies to ghk=ω . The phase and group velocities can be 

expressed as ghcc gf ==  and the wavelength as ghTL = . The wave 
speed is independent of the other wave properties and depends only on the 
water depth; therefore shallow-water waves are non-dispersive. This 
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approximation is usually used when 11/Lh < . Both approximations (i) and (ii) 
are accurate within 10% for the given limits of h  and L .  

For transitional water depths limited by 21251 << Lh  the phase speed 

can be expressed as ( ) ( )11 2tanh2 −−= hLgTc f ππ . The group velocity of waves 
propagating in deep or transitional water is smaller than the phase velocity. The 
interplay of the phase speed and the group speed can be vividly expressed with 
the use of an example from nature. An observer that follows a group of waves at 
group velocity will see waves that originate at the rear of the group, travel with 
the phase velocity and disappear at the front of the wave group. A wave field 
excited by a storm usually consists of waves with a wide range of frequencies. 
Stormy winds excite directly relatively short wave components while longer 
waves are gradually generated by resonant interactions. High and long waves 
thus only can develop if the storm blows long time from the same direction over 
a large sea area. The growth of the wind-generated waves is limited by breaking 
of shorter wave components whereas longer components may propagate over 
extremely large distances. Long waves have very small decrease when they 
propagate over water surface (Sorensen 1973 [124]). If an observer can stay 
reasonably far from the storm area then (s)he can notice the swell – relatively 
long waves that have propagated out from the area where they have been 
generated. Intense swell frequently occurs at the open ocean coasts but seldom 
dominates the wave regime in the Gulf of Finland or Tallinn Bay (Orlenko 1984 
[79]). 

In deep water the wind-generated waves are not affected by bottom 
bathymetry. Getting closer to the coastline, they start to lose part of the energy 
through near-bottom dissipation, the wave profiles become steeper and the 
wavelengths shorter. The dispersion relation of surface waves is such that the 
speed of propagation of a wave depends on its length: the longer waves 
propagate faster except in very shallow conditions where all the waves 
propagate with a constant speed. This feature is partially reflected in 
propagation of ship wave packages: the group of the longest waves first reaches 
the point of measurements.  

Linear waves can be described also by certain dimensionless parameters 
such as the wave steepness LH  and the relative water depth Lh . The latter 
indicates whether waves are dispersive or not and whether the celerity, length 
and height are influenced by the water depth. Wave steepness implicitly 
indicates whether the linear assumption is valid. Large values of wave steepness 
correspond to situation where the linearity assumption may be questionable. 
The ratio hH  is called the relative wave height. Its large values also indicate 
that the small-amplitude assumption, a basic feature of linear waves, may be 
unacceptable. 

An appropriate nondimensional parameter to characterise the nature of 
surface waves in shallow areas (where the wave height is an appreciable 
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fraction of the water depth) is the Ursell number – a combination of the relative 
wave height and the relative water depth (e.g. Massel 1989 [68]): 

3

22

h
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h
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h
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




= . (16) 

The value of Ursell number is often used to select an adequate wave theory 
according to typical L  (or T ) and H  in a given water depth h. High values of 
Ur  correspond to large, finite-amplitude, long waves in shallow water and 
suggest that the use of a nonlinear wave theory could be appropriate. 

Natural wave fields are usually described in terms of (sometimes directional) 
wave spectra. In contemporary wave measurements and simulation the most 
important parameters – the wave height, period and, if directional properties are 
important, also the propagation direction – are obtained directly from measured 
or simulated spectra. The most common measure is the significant wave height 

SH  defined as the fourfold variance (standard deviation) of the water surface. 
An estimate of the significant wave height 3/1HH S ≈  is defined as the average 
height of 1/3 of the highest waves. This can be estimated in various ways; for 
example, in Almagrundet data below it is found from the 10th highest wave in a 
record of about 10 minutes once an hour under the assumption that the wave 
heights are Rayleigh distributed (Paper III). The mean period is usually 
understood as the average period of waves over some time interval whereas the 
peak period is the period of the wave component with the largest amplitude. 
 
 

3.3. Long nonlinear surface waves 
 
For many coastal engineering tasks the non-linear models must be used as the 
waves cannot always be approximated as linear. For example, when waves of 
appreciable height travel into shallow water, higher order wave theories are 
often required to describe their behaviour. 

The basic assumption of the linear wave theory is that 1<<ka  everywhere 
and 1/ <<ha  in shallow water where 1<<kh . For realistic finite amplitude 
waves these assumptions may become invalid. If 1<<ka  but not infinitely 
small, the equations and boundary conditions govering the wave properties can 
be expanded in a power series of ka  (Stokes 1847 [126]). Different versions of 
the Stokes’ theory that account for different number of terms in this expansion 
are used for short waves in deep water (Massel 1989 [68]). 

For limited depths, the Stokes wave theory can be used provided the Ursell 
number is relatively small. Dean and Dalrymple (2004 [17]) suggest that the 
Stokes theory is only meaningful provided 2538 2 ≈< πUr . Massel (1989 
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[68]) expresses the opinion that when 1≈Ur  and 108 −>hL , both the linear 
and the Stokes theory are useful in many aspects, even in some cases when the 
condition 1<<ka  is violated, and that the Stokes wave theory can be used up 
to 75≈Ur  in some cases. For even larger Ursell numbers (resp. for longer or 
higher waves, or for lesser depths) the Stokes wave theory is generally incorrect 
(Massel 1989 [68]). 

The necessity to switch from the linear and/or Stokes description to another 
framework becomes evident in the analysis of properties, behaviour and 
influence of long components of surface waves. For storm waves in the Baltic 
Sea and in the Gulf of Finland that typically have periods of 5–6 s (Kahma et al. 
2003 [47], Pettersson 2001 [88], Paper III), the threshold 75≈Ur  occurs for 1 
m high waves at a depth of 1–2 m ( 25≈Ur  at 3–4 m), and for a 3 m high wave 
at a depth of 3–4 m ( 25≈Ur  at 6–7 m). Therefore, for storm waves the 
Stokes’ theory can be applied up to the depth where the wave height is around 
80% of the water depth, that is, practically up to the wave breaking. The typical 
storm waves in the coastal zone of Tallinn Bay are short enough to use the 
Stokes’ approximation outside the surf zone.  

For long-period open ocean swell and for waves from fast ferries the 
situation is different. The period of a typical wave from a fast ferry in the 
Tallinn Bay area is 10–15 s (Paper V). The length of a wave with a period of 
10 s is hL 30≥  m; thus water with depth 10≤h  m can be already 
considered as shallow. The Ursell number for such a wave in the coastal area 
( 3≈h  m) is HUr 100≈  and already ship waves of moderate height 
( 5.0≈H  m) correspond to 50≈Ur . Consequently, Stokes description clearly 
fails for even longer or higher ship waves that frequently occur in the area in 
question (Papers II, V), or for lesser depths. 

An appropriate model for long finite-amplitude surface waves in shallow 
water is the Korteweg-de Vries (KdV) equation (Massel 1989 [68]). Its periodic 
solutions are called cnoidal waves, because they can be explicitly expressed in 
terms of so-called cnoidal (Jacobi elliptic) functions. This theory is based on the 
Boussinesq approximation and includes nonlinearity and dispersion effects but 
is restricted to waves progressing in one direction only. Cnoidal waves have 
more narrow crests, and more broad troughs than sine waves (Figure 3.3.1). The 
cnoidal wave theory is applicable provided 108 −>hL  and the Ursell number 

20>Ur  (Massel 1989 [68]).  
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Figure 3.3.1. Sketch of a typical cnoidal wave profile (left); profile of a sine wave with 
14 s period and a height of 0.9 m compared with the profile of cnoidal waves of the 
same height and length but propagating in water with a depth of 3–9 m. 
 
 
If the wavelength infinitely increases, the period of the Jacobi elliptical 
functions also infinitely increases and their modulus 1→k . For 1=k  the 
cnoidal wave theory reduces to the theory of KdV solitons. For another limiting 
case 0=k  the cnoidal wave approaches the sinusoidal wave. This happens if 
the wave height is small compared to water depth.  
 
 

3.4. Wind wave observations and modelling  
in the Baltic Sea 

 
Many Baltic Sea countries have performed extensive wave studies in the past 
and have implemented operational wave models nowadays. Contemporary wave 
measurements in the northern Baltic Sea were launched about three decades ago 
when several measurement devices were deployed in different parts of the sea. 
In particular, bottom-fixed devices were installed and operated by the Swedish 
Meteorological and Hydrological Institute (SMHI) near the caisson lighthouse 
of Almagrundet located in the western sector of the northern Baltic Proper, 
59°09' N, 19°08' E (Fig. 3.4.1). The wave data from this site form the main 
object of study in Paper III.  

An important step towards understanding open-sea wave conditions in the 
northern Baltic Proper (NBP) was made when the Finnish Marine Research 
Institute deployed a directional waverider there at a depth of about 100 m (Fig. 
3.4.1, 59°15' N, 21°00' E, Buoy 1). The relevant data set now covers 10 years, 
starting from September 1996 but excluding ice seasons. The highest waves at 
this location ( 7.7=SH  m) were recorded on 22 December 2004 (www.fimr.fi). 
The significant wave height has exceeded 7 m only four times at this site: twice 
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in December 1999 and twice within three weeks – on 22 December 2004 (when 
the largest single wave ever recorded in the NBP has been registered with a 
height of 14 m) and on 9 January 2005 during windstorm Gudrun. The peak 
periods during these events slightly exceeded 12 s. An overview of wave 
statistics in the northern part of the Baltic Sea is presented by (Kahma et al. 
2003 [47]). 
 

 
 
Figure 3.4.1. Wind wave observation sites in the northern Baltic Proper (left panel), the 
Gulf of Finland (upper right panel) and in the vicinity of Tallinn Bay. 
 
 
Unfortunately, hardly any instrumentally measured wave data are available 
from the coastal areas of Estonia, Latvia and Lithuania, except for visual 
observations from the coast and for sporadic measurements made with pressure-
based sensors (Soomere 2005 [121]). Older publications such as (Rzheplinsky 
and Brekhovskikh 1967 [103]) are obsolete. The books published in the former 
Soviet Union (e.g. Davidan et al. 1985 [16]) contained valuable wave data but 
were available only in Russian language and discussed wave properties in 
certain regions only. This makes it virtually impossible to identify basic features 
of the spatial distribution of wave properties in the Baltic Proper from the 
measured data. 

This gap has been partially filled by the use of numerical models that 
adequately represent the sea state of the northern Baltic Sea even in extreme 
conditions (e.g. Tuomi et al. 1999 [132], Soomere 2001a [115], Jönsson et al. 
2002, 2005 [43,44]). The overall picture of wave activity follows the well-
known anisotropy of the wind and wave regime in the Baltic Proper (Mietus 
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1998 [71], Soomere 2003 [117]). Statistically, the regions of the highest wave 
activity are found along the eastern coasts of the Baltic Proper. These areas are 
characterised by long fetches for the dominant winds and, consequently, the 
highest and longest waves of the northern Baltic Proper apparently occur in the 
vicinity of the entrance of the Gulf of Finland. 
 
 

3.5. Trends and extremes in wave fields of the Baltic Sea 
 
The longest regular wave measurements in the northern Baltic Sea have been 
carried out in 1978–2003 by the Swedish Meteorological and Hydrological 
Institute near a caisson lighthouse of Almagrundet (Fig. 3.4.1, Mårtensson and 
Bergdahl 1987 [69]). The extreme wave conditions and long-term trends of 
surface wave heights based on this data set are analysed in Paper III. 

Wave properties at this site are determined with the use of data from an 
inverted echo-sounder and based on the classical zero-downcrossing method 
(IAHR 1989 [40]). An estimate of the significant wave height 3/1H  (defined as 
the average height of 1/3 of the highest waves during a certain time interval) is 
found from the 10th highest wave in a record of about 10 minutes once an hour 
under the assumption that the wave heights are Rayleigh distributed. The 
significant wave height 3/1HH S ≈  is defined as the fourfold variance of the 
water surface (IAHR 1989 [40]). The highest 3/1H  at this site was 7.82 m in 
January 1984 (Paper III; some sources mention the value 7.7=SH  m, e.g. 
Kahma et al. 2003 [47]) whereas the mean period (which generally is slightly 
less than the peak period) reached 11 s. This is formally the largest significant 
wave height ever instrumentally recorded in the Baltic Sea. This storm is the 
only one recorded at that site when 73/1 ≥H  m was registered. 

The data for the years 1979–95, the period for which the data are the most 
reliable, show a linear rising trend of 1.8% per annum in the average wave 
height. The seasonal variation in wave activity follows the variation in wind 
speed. The monthly mean significant wave height varies from 0.5 m in May–
July to 1.3–1.4 m in December–January (Paper III). 

The most important conclusion in the context of the studies of ship-induced 
waves below is that typical mean wave periods are 4–5 s for wave heights 
below 1 m, about 6 s for wave heights around 2 m, and exceed 7 s only when 
wave heights are 3 m or higher. Note that the data set in question contains the 
mean period whereas the majority of other data sets and numerical simulations 
rely on the peak period. The corresponding values of the peak period, found 
from the recorded wave spectra, are about 20% larger than the mean period; 
however, not all spectra have a clear peak. 
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Long waves with periods over 10 s dominate in the wave field only in a few 
cases. This usually happens in the case of swell-dominated low wave conditions 
when the wave height 3/1H  is well below 1 m. Large mean periods may also 
occur during extremely rough seas. For example, the mean period reached 11 s 
in one case of rough seas with 3/1H  around 4 m, and also in the final stage of 
the January 1984 storm, when waves with periods 11 s dominated the wave 
field with 3/1H  about 7 m. 
 
 

3.6. Wave properties in the Gulf of Finland and  
in Tallinn Bay 

 
There exist high-quality wave data sets measured by the FIMR starting from 
1970s in areas surrounding Finland (Kahma et al. 1983 [45], Kahma and 
Pettersson 1993 [46], Pettersson 1994 [87], Pettersson 2001 [88], Kahma et al. 
2003 [47]). A directional waverider has been deployed off Helsinki where 
measurements have been made in 1990–91, 1994 and from November 2001 at 
the location of buoy 2 in Fig. 3.4.1 (59°57.9' N, 25°14.1' E, water depth about 
60 m) during the ice-free seasons. The highest 2.5=SH  m in the Gulf of 
Finland was measured at this site in November 2001 during a strong NNW 
storm (Pettersson and Boman 2002 [89], cf. hindcast for the Tallinn Bay area in 
Soomere 2005 [121]). The peak periods pT  reached 11 s during this event in the 
Gulf of Finland but were less than 10 s in Tallinn Bay. 

Early wave measurements in the Gulf of Finland have suggested that the 
peak periods are typically 4–5 s in this area, reach 8–9 s in the roughest seas, 
and usually do not exceed 10 s (Kahma and Pettersson 1993 [46]). More recent 
observations indicate that 11≈PT  s may occur in this area (Pettersson 2001 
[88]). Yet the rough seas, with 4~SH  m, have peak periods of about 8–9 s. 
The number of observations of larger peak periods is very small: peak periods 
of 11 s only occurred three times during measurements in 1990–1994; since 
wave properties have been recorded once an hour, these three cases may reflect 
one event. Peak periods were also close to 11 s for a short time during the very 
strong storm in November 2001. The distribution of frequency of occurrence of 
different peak periods in (Pettersson 2001 [88]) suggests that 10≥PT  s usually 
correspond to penetration of long-period swell of moderate height from the 
Baltic Proper to the Gulf of Finland (Paper III). 

Only a few instrumentally measured wave data are available from the coastal 
areas of Estonia (Orlenko 1984 [79], Soomere 2005 [121]). Wave conditions in 
the recent exceptional storm Gudrun (Soomere 2006 [123]) were measured by a 
pressure-based wave sensor near the Island of Naissaar (buoy 3 in Fig. 3.4.1). 
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Although the wave and wind observations in Tallinn Bay extend back to 1805 
(Soomere 2005 [121]), these visual data only represent the wave properties 
adequately in the immediate proximity of the Tallinn harbour (Orlenko, 1984 
[79]). For example, the swell is often noticed in the western entrance to the bay 
and at the area of Miiduranna, but it only seldom reaches the Tallinn Harbour 
area. 

The results of the above-described measurements in the Baltic Proper and in 
the Gulf of Finland cannot be directly extended to the Tallinn Bay area because 
of its extremely complex geometry and bathymetry. For that reason the basic 
features of the local wave climate, necessary for comparison of the properties 
and influence of ship and wind waves, were modelled with the use of the WAM 
model. This model, generally known as a deep-water ocean wave model, was 
verified in the area in question with the use of the measurements described in 
Paper V. Comparison of the modelled and observed data confirmed that this 
model can be used in the Tallinn Bay conditions up to a distance of 200–300 m 
from the coast and up to the depth of around 5 m (Soomere, 2005 [121]). The 
basic reason for such a favourable feature is that the waves in the Gulf of 
Finland area are relatively short and that the limited depth effects become 
evident only in very shallow areas. 

The dimensions of Tallinn Bay are about 2010 ×  km. Its wave regime is 
mostly governed by the interplay of the local geometry and winds in the 
northern part of the Baltic Proper and in the western part of the Gulf of Finland. 
The dominating winds in this area blow from southwest or northwest whereas 
strong west and east winds also frequently blow along the axis of the Gulf of 
Finland (Soomere and Keevallik 2003 [120]). Since Tallinn Bay is well 
sheltered for the eastern and southern winds, waves during such winds are small 
and short owing to short local fetch. The bay is partly protected from the 
western side by the island of Naissaar. The highest waves generated in remote 
areas can therefore only enter the bay from the North-West and North, or from 
West through the strait between Naissaar and the mainland (Soomere 2005 
[121]). The northernmost part of the bay between Aegna and Naissaar is 
frequently affected by waves generated in other parts of the Gulf of Finland; 
however, they usually do not penetrate into the bay interior.  

Strong long-lasting western winds are infrequent in the Gulf of Finland 
(Soomere and Keevallik 2003 [120]). The wave heights and periods during the 
northern and NW storms remain relatively small as the width of the gulf 
between Tallinn and Helsinki is 50–80 km in this area. The listed features 
suggest that high and long waves are infrequent at the coasts of Tallinn Bay. 
This is confirmed by both numerical analysis of the wind wave regime 
(Soomere 2005 [121]) as well as by observed wave field properties during 
experiments described in Paper V. The wave regime of Tallinn Bay follows the 
general properties of the wave fields in the Baltic Sea. It has significant annual 
variation, with a relatively stormy autumn and winter period and a calm spring 
and summer season. The wave regime also exhibits a strong spatial variability. 
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The reason is that the banks and shallow areas located at the entrances of the 
bay shelter certain parts of the bay from northern and western winds. A part of 
their effect is indirect: topographical refraction of longer waves at their 
underwater slopes redirects a part of the waves so that less wave energy enters 
the inner parts of the bay. 

The highest waves occur in the vicinity of Tallinn-Helsinki ship line where 
significant wave height exceeds 2 m each year and may reach 4 m in extreme 
NNW storms. Quite rough seas may occur in the central part of the bay during 
extreme NW storms and at the western entrance during strong west storms 
(Soomere 2005, 2006 [121, 123]). Yet high waves occur infrequently and the 
wave climate is relatively mild compared to that in the open part of the Gulf of 
Finland (Soomere 2005 [121], Orlenko 1984 [79]). Both the wave heights and 
periods are usually moderate. The significant wave height SH  only exceeds 
1 m if the mean wind speed exceeds 10 m s–1 during a few hours. The mean 
wave periods are 3–4 s in such wind conditions but a swell with a typical 
frequency of 4–5 s may appear if such winds persist at least 4–5 hours. Gales 
with the wind speed exceeding 14–15 m s–1 result in 2≈SH  m. The wave 
periods vary largely according to the duration of the gales but the mean period 
normally does not exceed 4–5 s. Since swell of substantial height can enter into 
the bay only from the west, swell-dominated wave fields infrequently appear 
after strong storms. Wave fields with 1>SH  m only appear with a probability 
of about 1% whereas the peak periods remain well below 10 s even in the 
strongest storms. 
 
 

3.7. Ship waves in Tallinn Bay 
 

3.7.1 Possibilities of description of ship waves 
 
When a ship passes through water surface, it produces a series of waves that are 
limited in both space and time, and are called ship wake. The properties of ship 
waves in the framework of the linear wave theory in an inviscid sea and without 
surface tension are well known (see, e.g., Lamb 1997 [58], §256, or Lighthill 
1978 [62], §3.10). The stationary ship wave pattern in deep water is located 
within a triangular area past the ship and is independent of the ship’s speed. It 
consists of one set of waves that move forward and out from the disturbance 
(diverging waves), and the other set of waves move in the direction of the 
disturbance (transversal waves, Fig. 3.7.1.1). The highest waves are found at the 
borders of the area filled with ship waves. The periods of the highest ship waves 
are roughly proportional to the ship speed (Sorensen 1973 [124]); consequently, 
the length of the highest ship waves also increases with the increase of the 
speed. 
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Navigational speeds in water of finite depth are distinguished according to 
the depth Froude number ghvFd =  that is the ratio of the ship speed v and 
the maximum phase speed of surface gravity waves. Generally, the effects of a 
finite depth become evident when the wavelength twice exceeds the water 
depth. For the highest diverging waves this corresponds to about 69.0≈dF  
and for transverse waves at the sailing line to about 56.0≈dF  (Sorensen 1973 
[124]). Therefore, at depth Froude numbers above 0.55–0.7 the ship-generated 
wave system should response to the water depth. 

 
  

Diverging waves 

Transverse waves 

 
 
Figure 3.7.1.1. Wave crest pattern generated by a point pressure disturbance moving 
over deep water. 
 
Operating at speeds resulting 1<dF  is defined as subcritical, at 1>dF  as 
supercritical and at 1=dF  as critical. There is a relatively wide transcritical 
speed range 15.184.0 << dF  in realistic conditions, where no clear distinction 
between sub- and supercritical regimes is possible (Hüsig et al. 2000 [39]). The 
ship wave pattern widens for increasing Froude numbers below 1 whereas the 
leading diverging waves become gradually long-crested and more accentuated 
compared with other wave components (Sorensen 1973 [124]). The wave 
heights increase particularly rapidly if 1→dF . Ships sailing at transcritical 
speeds may produce fundamentally different wave systems compared to 
conventional ships (Chen and Sharma 1997 [13], Guidelines 2003 [26], 
Sorensen 1973 [124]). 

The waves from high-speed ships, in particular on the open sea, are 
relatively small in terms of wave amplitude compared to storm waves, but may 
have a very long wave period (Kirk McClure Morton 1998 [51], Kofoed-
Hansen and Mikkelsen 1997 [54], Parnell and Kofoed-Hansen 2001 [83], 
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Whittaker et al. 2001 [142]). While frequently hardly visible in deep water like 
tsunamis, they have occasionally been found to cause violent impacts on the 
coast and energetic plunging breakers on beaches (Guidelines 2003 [26], 
Hannon and Varyani 1999 [30], Kirk McClure Morton 1998 [51], Kofoed-
Hansen and Mikkelsen 1997 [54]). Since the wave height increases 
proportionally to the square root of the changes of the group velocity (Dean and 
Dalrymple 2004 [17]), wind waves, possibly having larger amplitude in deep 
water but often clearly shorter wavelengths undergo a much smaller 
amplification in the shallow coastal zone. 

The motivation for detailed studies of features of the ship waves in Tallinn 
Bay comes from the fact that the periods of the highest waves excited by high-
speed ships (10–15 s) are much longer than typical periods of wind waves (<6–
7 s) in this area. Therefore, ship waves serve as a new component of 
hydrodynamic activity in this bay since natural waves with similar properties 
probably do not exist here even during strong storms. The longest ship-induced 
waves, with the length of about 100 m, also have considerable heights. They 
cannot be considered as linear in shallow water. The most important outcome 
from this fact is that the wakes may have significantly larger impact on the 
affected area than predicted by the linear theory (Paper VI). 

The central objects of study in Papers II, V, and VI are (i) the properties of 
waves from high-speed ships in the coastal area of Tallinn Bay, (ii) their 
potential difference from the typical parameters of wind waves in this area, and 
(iii) the corresponding environmental effects. The name “high-speed ships” 
stands here for the ships that are able to sail in the transcritical regime along the 
fairway of Tallinn Bay; among which the large car-carrying high-speed ships 
are called fast ferries. The investigation is based on numerous field experiments 
in different coastal areas of Tallinn Bay. The comparison of waves of different 
origin is mostly performed with the use of numerically estimated parameters of 
wind wave climate of Tallinn Bay. 

The studies described in Chapter 2 have been focussed on the ‘very’ weak 
non-linearity which only contributes to wave evolution in the long-term run. It 
was assumed that wave shape, properties and propagation features coincide with 
those of perfectly linear waves. This assumption, which frequently is not 
explicitly mentioned in the description of the kinetic theory, implicitly means 
that wave amplitudes have to be small. For description of spectral evolution of 
storm waves, violation of this assumption apparently is not essential, because 
the wave model based on the kinetic approach shows good results also for rough 
windseas where wave amplitudes and steepness are substantial. Another basic 
assertion in the kinetic theory is that the wave field consists of a large number 
of wave harmonics that are spread over large sea areas. Ideally, the kinetic 
theory even assumes that the wave systems have a continuous spectrum. 
Additionally, the kinetic equation is only valid when group velocities of 
resonantly interacting waves are different. 
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The listed assumptions are violated for ship wakes. In many cases of 
practical interest they have considerable heights, are concentrated in spatially 
localised wave groups and, in particular in shallow water, have nearly equal 
group velocities. Therefore, generally they cannot be considered as a part of the 
surface wave system in the kinetic approach. Formally, the structure of a ship 
wake can be examined with the use of the Fourier analysis. This technique 
allows identifying different wave components of the wake. Yet doing so is not 
always justified because a ship wake is a system of transient waves occasionally 
containing even solitary waves (Chen and Sharma 1997 [13], Sorensen 1973 
[124]). For that reason, methods enabling analysis of single components of ship 
wakes generally have to be used in their analysis.  
 
 

3.7.2. Properties of ship-generated waves in the Tallinn Bay area 
 
Extensive field studies of both wind wave and ship wave properties in Tallinn 
Bay are described in Paper V. The main goal was to identify the typical and 
extreme parameters of wake waves of different types of ships and to describe 
their potential influence in different coastal areas of the bay. Nearly 1000 ship 
wakes were traced during about 200 hours on 15 days. In the frame of the 
studies, only the properties of wakes necessary for estimates of the bulk 
influence of ship waves on coastal processes of Tallinn Bay have been analysed. 
Many other important questions, for example, the dependence of the properties 
of wakes on the navigation details (vessel speed, distance from the ship track, 
ship load and vessel trim), were not considered. 

Since the periods of waves generated by fast ferries may vary from 3 s up to 
40 s (Kirk McClure Morton 1998 [51]; Kirkegaard et al. 1999 [52]), 
appropriately positioned pressure sensors can be used for description of their 
basic parameters. During the field experiments in 2002, the wave properties 
were measured in areas with the depth of about 5 m in different parts of Tallinn 
Bay and at different distances (2–8 km) from the ship lane (Paper V). The wave 
recorder SBE26 (Sea-Bird Electronic) was positioned at the depth of 2–2.5 m in 
the water column in order to adequately represent even the largest waves. This 
configuration allows to trace wave components with the periods >1.5–2 s. This 
resolution is also suitable for wind wave measurements in the case of moderate 
and strong winds when wave energy is mostly concentrated in components with 
larger periods. 

The study of the recordings comprised an analysis of the raw pressure signal 
(from which the longest waves are identified with the use of the zero-upcrossing 
analysis, IAHR 1989 [40]), spectrally filtered pressure signal, water surface 
time series (reconstructed on the basis of the Fast Fourier Transform method) 
and spectral properties of the wave field. The details on the measurement 
technique and sites are described in Paper V. The estimates of the relative role 
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of ship waves (based on both the experimental data and numerically estimated 
natural wave) in wave climate and a comparison of the influence of waves of 
different origin are described in Paper II. 

The measurements were performed during spring and summer seasons. This 
period contains the most intense navigation of fast ferries. Also, the relatively 
mild weather conditions were favourable for experimental work: less 
background noise from wind waves to be filtered out, and it was easier to 
operate with the experimental setup in calm seas. The structure of wake patterns 
of different ships is analysed and the maximum and mean values as well as the 
spatial variability of the wake heights of fast ferries are described. As a new 
development in the ship wave analysis, the daily average frequency spectra of 
wakes have been constructed (Fig. 3.7.2.1). The extensive wave measurements 
in Tallinn Bay give also an impression of wind wave properties for different 
wind conditions and the general features of natural wave fields during the 
relatively calm spring and summer season. 
 

 
 
Figure 3.7.2.1. (a) The daily average spectral energy density at Aegna jetty on 14.04 
(solid line), at Pringi jetty 12.05 (dashed line) and at the Viimsi museum on 31.05–
01.06 (grey line). (b) The daily average spectral energy density at the western coast of 
Aegna on 17.07 (dotted line), on 18.06 (dashed line) and on 20.06 (grey line), and at 
Naissaar harbour on 06–08.08 (bold line).  
 
 
The wakes of hydrofoils is practically indistinguishable from the natural 
background even on calm days. The wakes of conventional ferries were very 
similar to natural waves occurring in typical wind conditions of Tallinn Bay; 
since their heights are smaller than the heights of storm waves, such wakes do 
not present any specific features or influence compared with the natural 
background. For that reason, we only describe properties of wakes from fast 
ferries in what follows. 
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Waves caused by fast ferries generally are higher than those excited by 
hydrofoils or conventional ferries. Yet their heights are usually moderate. The 
daily highest examples are about 1 m in several sections of the eastern coast of 
Tallinn Bay. The typical heights increase with the distance from the harbour and 
are the largest at the coasts of Aegna. The heights of waves generated jointly by 
two or three ships (optionally, in a superposition with a background wind wave 
field) may reach in extreme cases 1.7–2.3 m at the 5 m isobath of the eastern 
coast of Tallinn Bay. In the remote areas such as the nearshore of Naissaar their 
height usually does not exceed 70 cm. 

The fast ferries’ wakes usually have a group structure in the coastal area 
(Paper V). A wake arrives the eastern coast of the bay (about 2–3 km from the 
ship lane) approximately 10 min after a ship has passed. Its total duration is 
about 10–15 min. The majority of the wave energy of fast ferries’ wakes is 
concentrated in two parts. The fragments are well separated in both time and 
space domain but also in the spectral domain (Figure 3.7.2.2 and Figure 
3.7.2.3). The first one is the group of leading waves that have typical periods of 
10–15 s and lasts about 3–5 minutes. These waves usually are the highest and 
have the largest periods. Their daily maximum height at a depth of 5 m is 80–
108 cm, depending on the site. Such waves extremely seldom exist in natural 
conditions in the area in question. 

The highest leading waves have been measured near Aegna jetty in relatively 
deep (6.7 m) water (Figure 3.7.2.4). Theoretically, this area may be hit by large 
waves generated by ships sailing at transcritical speeds. The number of wave 
crests with the heights close to 1 m may be many tens per day in certain parts of 
the coast. The typical height of the highest waves from individual wake 
patterns, however, is moderate and in most cases equals to 60–80 cm. In a more 
remote coastal zone of Naissaar (about 8 km from the ship lane) the leading 
waves arrive several tens of minutes after a ship has passed. Their maximum 
and typical height is ~50 and 20–30 cm, respectively. 

Another energetically important wake component consists of the waves of 
the second wave group arriving a few minutes after the leading waves. Their 
periods (7–8 s, at times up to 10 s) and amplitudes are generally less than those 
of the leading waves. However, the bulk energies of these groups are 
comparable with each other. 
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Figure 3.7.2.2. (a) Waves generated by AutoExpress/2 near Aegna jetty with two well-
defined groups of waves. (b) Pressure fluctuations caused by the wake of SuperSeaCat 
IV near the western coast of Aegna at 00:27–00:39 on 21.06. The first wave group has 
the maximum height of 45 cm, the second group – of 25 cm. The highest is the third 
group (52 cm). The significant height of the natural wave background is about 30 cm. 
The wave height derived from pressure signal depends remarkably on the wave 
frequency. This is the reason why relatively small-amplitude pressure signal of shorter 
waves corresponds to relatively large wave amplitudes. 
 
 
The closing part of a wake optionally consists of short and steep waves with 
periods of 3–4 s. They may arrive much later than the leading waves. In a few 
cases (more frequently at Naissaar) they are the highest part of a wake pattern. 
The duration of this segment is about one minute. It consists of about ten to 
fifteen wave crests. It carries a small fraction of the total wake energy but may 
remain compact during a long time. Owing to its small wavelengths, it may 
penetrate into the vicinity of the shoreline and is visually easily detectable. The 
actual mechanism of their generation is not clear (Brown et al. 1989 [11]). 
Since it contains relatively steep waves, in certain conditions it is the most 
dangerous group for the small boat traffic. 
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Figure 3.7.2.3. (a) Spectral density of energy for the wave groups of Autoexpress/2 
from Fig. 3.7.2.2a. The highest waves leading the wake had periods 13–14 s and the 
final part – about 9 s. The spectrum of waves at 08:33–08:39 represents the natural 
wave background and is not distinguishable in the scale of the figure. (b) Spectral 
density of the energy of three wake pattern components of SuperSeaCat IV near the 
western coast of Aegna at 00:05-00:39 on 21.06 (see Fig. 3.7.2.2b). The dotted line 
represents the first wave group, the dashed line – the second group and the bold line - 
the third group. The grey line describes the spectrum of the whole wave field. The long 
wave components have the dominating periods about 16 s and 9–10 s. The wake is 
superposed by a relatively intense mixed wave field with the significant wave height 
about 30–35 cm and the mean period about 4 s. Although the group of short waves has a 
duration of only 1 minute from the 34-minute trace, it is still clearly visible in the wave 
spectrum as a double peak at the frequency of about 0.3 Hz. 
 

 
 
Figure 3.7.2.4. Heights of the long-wave components (periods >8 s; bold line) and the 
whole wash of fast ferries (dotted line) near the island of Aegna, 14.04.2002. Names of 
ships are indicated for several peaks. 
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The comparison of the natural wave climate with the results of the described 
studies of ship wave properties leads to some impressive results. The daily 
highest examples of ship waves (~1 m) are mostly found in the range of the 
annual highest 1–5% of wind waves (Paper II, V). The annual mean energy of 
ship waves at the 5 m isobath of Tallinn Bay (Fig. 3.7.2.5) is about 5–8% from 
the annual mean (6–12% during the spring and summer seasons) wind wave 
energy (Papers II, V, Soomere et al. 2003 [118]). This share is not very unusual: 
much larger portion of ship-generated waves in the total wave activity is 
identified in certain well-sheltered microtidal basins (Schoellhamer 1996 [106]). 
Yet the unique situation is that ship waves form an appreciable part of total 
wave energy at sea coasts partially open to dominating winds. 

Comparison of the energy of ship and wind waves is equivalent to an 
evaluation of the squared wave heights. The wave energy flux (wave power, see 
Section 3.2) implicitly accounts for the wave periods since longer waves have 
higher group velocities. The annual mean power of ship waves constitutes 18–
35% (27–54% during the summer season) from the annual wind wave power at 
the distance of 2–3 km from the fairway, and about 12% (17%) at sites located 
about 10 km from the fairway in the coastal area of Tallinn Bay (Fig. 3.7.2.5, 
Papers II, V). The reason for the excessive portion of the ship-wave power is the 
moderate dominating period of wind waves. 
 

 
 
Figure 3.7.2.5. (a) Energy of wake components with different periods. (b) The share 
(%) of the energy and power of ship waves compared with the wind wave energy and 
power. Detailed description of the measurement sites I-V is in Paper V. 
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3.7.3. Multisensor analysis of the surface waves 
 
The main shortages of the experiments in Tallinn Bay described in Papers V, VI 
are that they (i) consist of one-point measurements and that (ii) only pressure 
signal has been recorded. Several important properties of waves such as their 
propagation direction or the length of the wave crests cannot be established 
from one-point pressure data. Also the wave shape generally cannot be exactly 
restored from pressure data, because the processing of raw pressure data, which 
includes direct and inverse Fourier transformation of sine harmonics of the data, 
neglects high-frequency wave components and potentially distorts the geometry 
of the water surface. This is a general shortage of pressure-sensor-based wave 
measurements and direct recordings of the water surface presented in the next 
section generally are necessary in order to correctly describe the wave shape. 

Usually the directional parameters of wave fields are obtained by using wave 
riders equipped with inertial sensors (Datawell Directional Waverider MK III, 
for example) or wave motion sensors based on GPS (Datawell DWR-G). These 
and analogous devices usually do not store the raw data and only export the 
directional wave spectrum (see, e.g. Kahma et al. 2003 [47]). For that reason, 
they cannot be used for the analysis of ship wakes that consist of groups of short 
duration. 

The directional parameters of surface waves can be measured by the use of 
an array of sensors (Dean and Dalrymple [17], Chapter 7, Panicker and 
Borgman 1970 [82]). Although similar equipment was missing during the 
Aegna experiments and we had to rely on one-point data, efforts were made 
towards the simultaneous use of several pressure sensors for the detailed survey 
of directional properties and crest lengths of different groups of the ship wakes 
with implementing the methods of statistical calibration of the sensors (Paper 
VIII). This approach is a particular case of the use of a multisensor system.  

Usually the multisensor technique means using different technical equipment 
simultaneously, acquiring data from the same (wave) field (in certain cases from 
the same point). Its main advantage in surface wave matters is the possibility to 
get data from different sea points. Their comparison may give some impression 
not only about the wave propagation direction but also about the geometry of 
the water surface and characteristics of single wave crests. Multisensor 
experiments are potentially able to distinguish the wave components coming 
from different ships as well as components reflected from coastal structures and 
bottom inhomogeneities. It might also be possible to analyse the challenging but 
not detected yet interactions of soliton-like ship waves in shallow water 
(Peterson et al. 2003 [86]). 

The disadvantages of the multisensor system are the complexity of data 
processing and the calibration of the sensors. Usually sensors tend to give a 
certain bias; the situation is more complex in the realistic sea where moored 
sensors may drift to some extent owing to the influence of waves and currents. 
Different sensors may have also different sensitivity to noise characteristics. For 
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example, optical instruments such as laser-based wave height detectors are 
known to be sensitive on spray from the wave crests. Yet multisensor wave 
measurements (for example, from the North Sea oil platforms (Forristall et al. 
2002 [24]), where wave radars, laser, wave gauges and video technique were 
used simultaneously) have given promising results in obtaining better 
knowledge of the statistical distribution of crest heights according to the given 
wave spectrum. The relevant results are of key value in solving the problem of 
setting the correct deck (platform) heights. 

The most important problems to solve for an efficient use of a multisensor 
system are (i) the intercalibration of the sensors and (ii) data synchronisation. 
For a small number of sensors of the same type (e.g. system of three wave 
sensors analysed in Dean and Dalrymple [17]) the solution is straightforward. If 
the system grows larger and/or consists of equipment based on different 
detecting technology (Dean and Dalrymple [17]), and if the sensors are sparsely 
distributed, one has to employ the methods of statistical calibration. This is a 
viable alternative to in situ physical calibration in several cases where the latter 
is too expensive or technically impossible (especially in case of large systems 
and/or severe environmental conditions, which is the case of storm wave 
measurements). 

An attempt to construct a data analysis technique for such multi-sensor 
experiments is described in Paper VIII. The suggested statistical calibration 
method is based on the Kalman filtering (KF) approach. This technique resolves 
the central question: getting accurate information using inaccurate data. It 
allows filtering unwanted noise out from a data stream. For a system of pressure 
sensors the noise consists of the thermal drift of electronics, non-tidal water 
level instabilities, wave-induced changes of the sensor etc. 

The idea employed in Paper VIII was to use Extended Kalman Filtering for 
processing the raw data. As a first approximation, it was assumed that the 
conditions of observability and controllability are not violated and that the KF 
algorithm converges. Also the error estimates (obtained, e.g., from additional 
modelling activities or from another series of measurements) were assumed to 
be correct. This set of assumptions is somewhat optimistic; for example, it is not 
always possible to guarantee the stability of the conventional KF algorithm. The 
basic advantage of the proposed method is that it provides a numerical measure 
for making it sure whether the system suffers from any serious divergence of 
filtering. In other words, the outcome of this sort of filtering allows deciding 
whether seemingly unusual data from a certain set of sensors reflect the factual 
unusual behaviour of the sea surface or a failure of sensors. The latter is a key 
question in interpretation of extreme wave conditions. This technique is planned 
to be implemented in multi-sensor measurements of ship wave patterns. 

The central problem in using this kind of technique is that the sea surface is 
extremely irregular. For that reason, in wave measurements it is impossible to 
determine the probability that a measurement of the sea surface position at a 
certain instant was correct. The problem is even more complicated if the truth 
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must be evaluated at every measurement point and we have to rely on statistical 
methods without knowing how much we can trust the results. A feasible way to 
overcome this difficulty consists in the use of the Fast Kalman Filtering (FKF) 
method (Lange 1997 [59]) that is supposed to be appropriate to resolve this 
shortage and to improve the quality of multi-sensor wave data. The FKF method 
is also attractive due to its numerical efficiency (it is based on a semianalytical 
solution), stability and capabilities of error analysis.  
 
 

3.7.4. Shape of long ship waves 
 
The shape of the water surface in a wave field (called the wave shape below) is 
one of the most important features of long waves, because many wave-induced 
effects directly depend on it. In particular, velocity of water particles follows the 
shape of long waves. Shapes of ship waves were recorded during joint Estonian-
Finnish measurements of fast ferries’ wakes in September 2001 (Bengston et al. 
2003 [9], Peltoniemi et al. 2002 [85]) but the results are neither published nor 
available by other means. The shape of the pressure signal in records described 
in Paper V suggests that the leading waves of a wake are asymmetric: the crest 
elevation clearly exceeds the depth of the trough. Experimental evidence in 
analogous experiments (Parnell and Kofoed-Hansen 2001 [83], Whittaker et al. 
1999 [141]) also indicates that the shape of ship waves in shallow water is not 
sinusoidal. 

The properties and influence of ship waves usually are calculated assuming 
that they can be described by the linear wave theory (Soomere et al. 2003 [118], 
Parnell and Kofoed-Hansen 2001 [83]). The length of the leading waves of 
wakes from fast ferries exceeds 100 m in areas with a depth of ≤10 m. At 
smaller depths, such waves with a height of about 1 m cannot be considered as 
linear. As discussed in Section 3.3, even higher-order classical theories, for 
instance the Stokes wave theory (e.g. Massel 1989 [68]), are not applicable for 
waves with such properties. Theoretically, the shape and properties of long 
waves with appropriate parameters propagating in a shallow region with an 
ideal flat bottom should match those of the corresponding solution of the KdV 
equation. The single waves formed at the critical velocity may also have 
features of cnoidal or solitary waves (Li and Sclavonous 2002 [61]). The sea 
bottom is never perfect and in real conditions it is not clear in advance what 
exactly happens when waves approach coastal areas that have two-dimensional 
bottom with many imperfections. 

As discussed above, the wave shape is universal for sine waves but depends 
on wave parameters in the cnoidal framework. This feature makes it possible to 
estimate the ‘level’ of nonlinearity of ship waves from measurements of the 
wave geometry. To some extent, the results allow to choose an adequate wave 
theory to estimate the wave impact on the coast. The non-linearity of the waves 



 
 

85

has to be taken into account in many engineering calculations (not only at the 
coastal area, but for the oil platforms as well, for example, in the analysis of the 
maximum elevation of the water surface) and is a generic feature affecting wave 
properties. Another important issue is that the slope of the water surface in 
cnoidal or soliton-like waves may exceed that in linear surface waves of the 
same height and length (Massel 1989 [68]). Therefore, such waves may be 
particularly dangerous for small boats. 

The appearance of long ship waves approaching shallow coastal areas of 
Tallinn Bay was studied in Paper VI. The technique used for wave profile 
measurements was the most robust: the instantaneous position of the water 
surface was determined from its location (recorded with a video camera) on the 
pillar that was rigidly fixed to the bottom and held a meter scale. Additionally, 
the waves were registered with the use of the pressure sensor fixed to the same 
pillar. The shape of ship waves was established from the water surface time 
series, digitized from the video recordings (Figure 3.7.4.1). The measurements 
of the wave shape needed a lot of patience and time because of the changing 
wind conditions and unexpectedly passing small ships and boats (the pilot boat 
to and from Rohuneeme plus numerous holiday-makers) generating the 
background noise that accomplished the measurements and made more complex 
the separation of the fast ferries’ wakes.  

Analysis of the water surface records in Paper VI shows that a large part of 
long components of waves from fast ferries are clearly non-linear in the test 
area. The wave shape considerably differs from the sine function but almost 
perfectly fits to the theoretical shape of cnoidal waves. Ship waves of already 
relatively small height (over 0.4 m, Figure 3.7.4.1) considerably differ from sine 
waves at a depth of about 4 m. The parameter k  in the Jacobi elliptic functions 
(called elliptic modulus) is very close to 1 (mostly 0.95–0.99) for many waves, 
the shape of which practically coincides with that of the solitary wave solution 
of the KdV equation. These waves cannot automatically be considered as 
solitons, because not only the instantaneous shape but preserving it in time and 
in collisions are the distinguishing features of solitons. Yet cnoidal waves of 
relatively large amplitude preserve their identity and shape fairly well in time, 
and partially also during interactions (Svendsen and Veeramony 2001 [128]). 
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Figure 3.7.4.1. Water surface time series (bold line) in a ship wake with a maximum 
wave height of 0.95 m, the shape of the best-fitting cnoidal waves (solid line), and the 
corresponding sine wave (dashed line). 
 
The results in Paper VI confirm that the shape of water surface in a large part of 
ship-generated waves reaching the coastal area of Tallinn Bay well matches that 
of the cnoidal waves even in conditions of the non-perfect sea bottom. Thus it is 
likely that the dynamics of a certain part of ship wakes in the shallow areas (at 
least, at the depth of experiments, about 4 m) is very close to that of cnoidal 
waves whereas the longer and higher ship waves may behave as ensembles of 
KdV solitons. For wind waves of comparable height the linear theory yet is 
applicable at this depth, because they are much shorter than ship waves (Paper 
V, Soomere 2005 [121]; see also Section 3.3). 

For a wave with a given height and length the cnoidal wave theory predicts 
considerably larger velocities of water particles than the linear theory (Paper 
VI). Consequently, velocities of water particles in long ship waves in the coastal 
area of Tallinn Bay apparently are much larger than expected from the classical 
approach. A large difference may frequently occur in areas where the cnoidal 
wave theory is preferable, i.e., for depths less than 10–15 m, depending on the 
wave period and height. The ratio of maximal vertical and horizontal velocities 
in cnoidal waves compared with these velocities in the linear approximation for 
the waves with identical parameters is presented in Figure 3.7.4.2. The 
difference is at times substantial; for example, at the depth of 5 m the near-
bottom velocity of water particles for cnoidal waves (with a period 15=T  s 
and wave height 1 m, that is, for waves that occur several times a day near 
Aegna jetty, Paper V) can excite by 50–60% larger horizontal velocities of 
water particles than predicted by the linear theory (Figure 3.7.4.2a). The 
difference of the vertical speed (at the height of half-depth of the water column) 
may be more than two times (Figure 3.7.4.2b). Therefore, the possible adverse 
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influence of long ship-generated waves may be much larger than its estimates 
based on the classical wave theory.  
 

 
Figure 3.7.4.2. a) Ratio of the maximal near-bottom velocities ( sinecnoidal vv / ). b) Ratio 
of the maximal vertical velocities at the 1/2 depth of the water column. 

 
 
The described results are not unexpected. For example, the shape and properties 
of long waves in shallow areas with flat bottom should exhibit nonlinear 
features and resemble those of cnoidal waves for certain combinations of wave 
parameters and the water depth. However, the sea bottom is not perfect and may 
greatly affect the actual wave shape. The influence of bottom topography on 
ship waves may be decisive in some cases (see, for example, Jiang et al. 2003 
[41]) and it will certainly be a subject for future research. 
 
 

3.8. Environmental implications of ship wave activity 
 
The influence of ship waves may be critical for certain processes in semi-
enclosed estuaries or in areas usually not exposed to swell or severe windseas 
(Guidelines 2003 [26], Kirkegaard et al. 1999 [52]). Tallinn Bay is an example 
of a partially sheltered sea region; however, very rough seas may occasionally 
occur it this area and a large part of its coast show features of high natural wave 
intensity. The above has demonstrated that wakes of the particularly intense fast 
ferry traffic form an appreciable part of the total wave intensity. The traffic is 
very intensive indeed. Nearly 70 crossings of the bay take place daily. A variety 
of different types of high-speed ships operated there during the measurements. 
The potential implications of the heavy fast ferry traffic are described and 
discussed in Paper II. 

The first impression one can get from Section 3.2 and Figure 3.7.2.5b is that 
the ship wave energy is small compared with the total wave activity. The fact 
that 70–80% of the energy of fast ferries’ wakes is concentrated in wave 
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components with the periods exceeding 5–6 s (Figure 3.7.2.5a) becomes first 
evident in comparison of natural and wave-induced wave power. Another 
important feature is that the daily highest ship waves belong to the annual 
highest 1–5% of wind waves. These features suggest that ship waves still may 
play a remarkable role in the hydrodynamic activity of Tallinn Bay. 

A specific influence of wakes of high-speed ships occurs when wake waves 
are much longer than wind waves (Parnell and Kofoed-Hansen 2001 [83], 
Soomere and Kask 2003 [119]). The typical wind wave periods in Tallinn Bay 
are 2–4 s and rarely reach 6–7 s (Section 3.6). The leading wake waves 
frequently have a height of about 1 m and a period of 10–15 s (Paper V). Such 
waves extremely seldom occur in natural conditions in Tallinn Bay as well as in 
certain regions of other semi-enclosed seas. They are qualitatively similar to 
long-period ocean swell. Together with wind waves, they may form bi-modal 
wave systems, impact of which on coastal processes may be much higher 
compared with that of wave systems with a single spectral peak and a 
comparable total energy (Coates and Hawkes 1999 [15], Hawkes 1999 [36]). 

The majority of the energy of ship waves is concentrated in waves with 
periods exceeding 8 s and frequently reaching 10–15 s. This seemingly 
insignificant contrast between the prevailing periods of natural waves and ship 
waves causes highly a diverse impact of the waves of different origin at certain 
depths (5–20 m). The reason is that for a fixed wave height, the wave-induced 
near-bottom velocity depends essentially on the wave period. For the mentioned 
depths, the highest variation of this velocity occurs when the wave period 
increases from 5 s to 8 s (Figure 3.8.1). 
 

 
 
Figure 3.8.1. The maximum wave-induced near-bottom velocity versus wave period for 
the sine wave height of 1 m and water depth of H=3–30 m 
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A typical ship wave with the height 1 m and the period of 10 s induces the near-
bottom velocity as high as about 45 cm s–1 at the depth of 10 m whereas the 
maximum velocity imposed by a wind wave with the period 4 s is only about 
10 cm s–1. A 2 m high wave with a period of 5 s or a 4 m high wave with a 
period of 4 s excites velocity 45 cm s–1 at this depth. Thus, the impact of a 
typical ship wake on bottom sediments and aquatic wildlife is comparable with 
that of the waves occurring in very strong storms. At certain depths, the near-
bottom orbital velocities in the leading (the longest and highest) ship waves 
may be considerable larger than described here because of the nonlinear effects 
(Section 3.7.4). The described features suggest that ship waves may serve as a 
new forcing factor in this bay. 

Although species that prefer rocky or sandy bottom may benefit from the 
increased hydrodynamic activity, the concern is that abrupt changes in forcing 
conditions usually have an adverse effect on the local ecosystem. The primary 
reaction of the sea bottom (the benthic layer and fine bottom sediments) to the 
increased hydrodynamic activity usually consists in intense (re)suspension of 
bottom sediments (Erm and Soomere 2004 [20], Soomere and Kask 2003 
[119]). The accompanied reduced water transparency (Osborne and Boak 1999 
[80], Erm and Soomere 2004 [20]) may have strong suppressing feedback on 
the bottom vegetation, and suspension and re-sedimentation of finer sediments 
may considerably worsen fish spawning conditions. 

An important factor in associated questions of maritime safety is the increase 
of the wave height when the wake proceeds into shallow water. The 
conservation law of wave energy flux prescribes that the height increase is 
roughly inverse proportional to the square root of the decrease of the group 
velocity (Dean and Dalrymple 2004 [17]). Therefore the increase in height is 
much stronger for the long waves generated by a fast ferry, than for the shorter 
ones of a conventional ship or for the short-wave part of the wake. This increase 
may have played a role in the some phenomena. For example, New Scientist 
reported that in August 1999, holidaymakers on a beach at Felixstowe, three 
miles north of Harwich, UK, were forced to "flee for their lives when enormous 
waves erupted out of a millpond-smooth sea" (Hamer 1999 [27]). The 
possibility of forming highly monochromatic packets of short waves which 
propagate much more slowly than the leading ship waves means that the most 
dangerous (short but steep) waves might unexpectedly arrive a long time (even 
more than an hour) after the leading waves (Paper V).  

The specific features of ship waves only become evident in Tallinn Bay 
because they are much longer than natural waves. Both the length and height of 
waves generally increase with the ship speed (Guidelines 2003 [26], Kirk 
McClure Morton 1998 [51], Sorensen 1973 [124]). Large high-speed ships 
frequently sail in the transcritical velocity range in Tallinn Bay (Paper V). The 
dependence of the properties of the wave pattern on the depth Froude number 
(see Section 3.7.1) suggests that the transcritical speeds are generally 
accompanied by high and long ship waves. Therefore keeping the ship speed 
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well below the critical one along the sailing line (either by reducing the speed of 
certain types of the ships or by shifting the fairway for fast ferries into deeper 
water) is a reasonable way to reduce the environmental impact of fast ferry 
traffic and to achieve environmentally friendly navigation in Tallinn Bay. 
Starting from 1997, several countries and communities have involved 
regulations (primarily based on wave height criteria in the nearshore 
environment, Parnell and Kofoed-Hansen 2001 [83]) for the fast ferry traffic. 
Relevant restrictions for Tallinn Bay have been discussed many times but no 
decision has been made yet. 

Some specific effects may become evident when ship waves start to behave 
as KdV solitons. A moving disturbance in open sea areas seldom forms solitary 
waves of considerable height (Li and Sclavonous 2002 [61], Hammack et al. 
1995 [29], Neuman et al. 2001 [78]). The results of Paper VI suggest that long 
ship waves that approach shallow regions eventually become highly nonlinear 
or even soliton-like structures (cf. Stumbo et al. 1999 [127]). Recently it has 
been shown that certain dramatic effects (incl. possibility of fourfold 
amplification of wave amplitudes and eightfold amplification of wave slopes) 
may occur when two trains of soliton-like waves intersect under a certain angle 
(Peterson et al. 2003 [86], Soomere and Engelbrecht 2005 [122]). 
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Summary 
 
This thesis mostly deals with two adjacent topics of propagation and evolution 
of long weakly nonlinear waves in geophysical applications and consist of two 
major parts. The first part is dedicated to resonant interactions of weakly 
nonlinear Rossby waves on a β-plane in the framework of the kinetic approach. 
The key development consists in accounting for the vertical structure of the 
motions, which are treated as a two-layer flow. The second part treats long 
weakly nonlinear waves excited by fast ferries. The key conclusion is that long 
waves from fast ferries may serve as the qualitatively new factor of 
hydrodynamic activity in certain types of open sea areas. 

The main object of the first part of the study form the energy redistribution 
patterns in different Rossby wave systems and between different modes in a 
two-layer ocean. The relevant kinetic equation describing interactions of 
different modes and slow energy exchange between different wave components 
is analysed numerically. The principles of the solver for the particular kinetic 
equation and the estimates of its acccuracy are shortly described. The possibility 
of occurrence of the double resonance (corresponding to the case when 
interacting wave components have equal group velocities and the kinetic 
equation fails) is analysed in some detail and its influence is removed from the 
numerical scheme. Several simulations of long-term evolution of Rossby-wave 
systems and the physical consequences of the spectral evolution are discussed in 
detail. The basic common features of the evolution of largely different initial 
flows are (i) the generation of a relatively intense preferably barotropic zonal 
flow and (ii) a tendency for the rest of the wave system towards a spectrally 
isotropic state. Several aspects of the problem of emerging of layered structures 
in realistic ocean are treated in the framework of a one-dimensional model of 
the vertical structure of the ocean. Numerical stability of a model of emerging 
layered structures owing to the interplay of double diffusion and turbulent 
mixing is analysed and an example of developing layers is presented. 

The second part of the thesis concentrates on properties and potential 
environmental influence of long weakly nonlinear waves excited by fast ferries. 
The analysis is based on (i) estimates of the typical and extreme local wind 
wave conditions obtained with the use of a spectral wave model based on the 
kinetic theory in an adjacent study and (ii) the results of in situ measurements of 
properties of ship waves, performed as a part of this thesis. The name ”fast 
ferries” stands here for large car-carrying ships that are able to sail with a speed 
close to the maximum phase speed of long waves gh  in Tallinn Bay. They 
frequently excite long waves, periods of which largely exceed the periods of the 
storm waves in this area. The parameters of ship waves in different coastal areas 
of Tallinn Bay are discussed based on a two-year measurement campaign 
largely performed by the author. A part of the results are interpreted in the 
framework of the cnoidal wave theory and the Korteweg-de Vries equation. 
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The mostly theoretical results of the first part of the study have been used in 
parallel studies of some features of evolution of more complex Rossby wave 
systems. The results of the studies into ship wave properties can be (and 
partially have been) used in various coastal engineering and environmental 
impact assessment problems in Tallinn Bay. They can be also directly applied to 
other shallow water bodies that are sheltered from long waves such as lakes 
hosting fast ferry traffic, Azov Sea, some areas of the Black Sea and the 
Mediterranean where they can be used for (i) quantifying the inluence of the 
fast ferry traffic, (ii) working out recommendations for limitations of the fast 
ferry traffic, and (iii) for constructing coastal structures in areas affected by ship 
waves. 
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Abstract 
 
Two adjacent topics of long waves in geophysical applications are considered: 
(i) evolution of weakly nonlinear Rossby waves on a β-plane in the framework 
of the two-layer kinetic equation and (ii) comparison of properties of waves 
from fast ferries with wind waves, key parameters of which are estimated from 
historical data and from the kinetic equation for surface waves. 

Energy redistribution patterns in different baroclinic Rossby wave systems 
and between different modes in a two-layer ocean are studied numerically under 
an assumption that the double resonance can be ignored. The basic common 
features of the evolution of largely different initial flows are that (i) a relatively 
intense mostly barotropic zonal flow is generated from very different initial 
conditions, and (ii) the rest of the wave system, incl. the whole baroclinic mode, 
tends to evolve towards a spectrally isotropic state. Numerical stability of a 
model of emerging layered structures owing to the interplay of double diffusion 
and turbulent mixing is analysed. 

Properties and shape of long weakly nonlinear waves from fast ferries are 
established from a series of in situ measurements in Tallinn Bay. Their 
comparison with typical and extreme wind wave conditions, extracted from 
long-term measurements in the open Baltic Sea and from simulations of the 
local wave climate in an adjacent study with the use of the WAM wave model 
based on the kinetic equation for surface waves, shows that fast ferries often 
excite long waves of substantial height, periods of which largely exceed the 
periods of the storm waves in this area. Shown is that the cnoidal wave theory is 
the proper tool for description of long ship waves in shallow areas. The key 
conclusion from the analysis of the potential environmental influence of ship 
waves is that long waves from fast ferries may serve as a qualitatively new 
factor of hydrodynamic activity in certain types of open sea areas such as the 
Azov Sea and some areas of the Black Sea or the Mediterranean.  
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Pikad nõrgalt mittelineaarsed lained geofüüsikalistes 
rakendustes 

 
Käesolev väitekiri on pühendatud pikkade, nõrgalt mittelineaarsete geofüüsika-
liste lainete levimise ja interaktsiooni kahele probleemipaketile ning jaguneb 
vastavalt kaheks suuremaks osaks. 

Uuringute esimene osa käsitleb Rossby lainete omavahelisi interaktsioone nn 
kineetilise teooria raames β-tasandi lähenduses nõrga mittelineaarsuse tingi-
mustes. Kontsentreerutakse lainetevahelist aeglast energiavahetust kirjeldava 
kineetilise võrrandi numbrilisele lahendamisele. Põhimõtteline erinevus varase-
mate analoogiliste töödega seisneb keskkonna vertikaalse struktuuri arvesta-
mises, mida vaadeldakse kahekihilisena. 

Peamiseks uurimisobjektiks on erinevate Rossby lainete komponentide ja 
moodide vahel aset leidev energia ümberjaotumine. Identifitseeritakse algselt 
erinevate lainesüsteemide evolutsiooni põhijooned – tsonaalse voolamise tekki-
mine ja lainesüsteemide ülejäänud osa muutumine isotroopseks. Analüüsitakse 
nn topeltresonantsi esinemise võimalust (mille puhul interakteeruvate lainete 
rühmakiirused on võrdsed ning kineetiline võrrand üldiselt pole korrektne). 
Lühidalt kirjeldatakse uuringuteks koostatud programmipaketti. Analüüsitakse 
erinevat tüüpi lainesüsteemide evolutsiooni põhilisi jooni ning esitatakse autori 
poolt läbiviidud numbriliste arvutuste tulemuste füüsikalised tõlgendused. 
Leitakse turbulentse segunemise ja topeltdifusiooni vastasmõjul kihtide tekki-
mist kirjeldava mudeli stabiilsuse tingimused. 

Töö teine osa hõlmab pikki, mittelineaarseid, kiirlaevade tekitatud laineid ja 
nende potentsiaalset mõju looduskeskkonnale. Pinnalainete kineetilisel 
võrrandil baseeruvate lainekliima hinnangute ja autori poolt läbi viidud in situ 
lainemõõtmiste alusel on teostatud võrdlev analüüs Tallinna lahes domineeriva 
tuulelainetuse ja kiirlaevade poolt põhjustatud lainetuse vahel. Kiirlaevadeks 
nimetatakse selles kontekstis laevu, mis sõidavad Tallinna lahel kriitilisele 
kiirusele (pinnalainete leviku maksimaalne kiirus antud sügavusega vees gh ) 
lähedase kiirusega. Selliste laevade tekitatud lained on sageli märksa pikemad 
kui tormilained Tallinna lahes. On antud ülevaade autori isiklikul osalusel 
teostatud kiirlaevalainete põhiliste parameetrite mõõtmistest Tallinna lahel ja 
tulemuste tõlgendamisest mittelineaarsete pikkade pinnalainete teooria valgusel 
Korteweg-de Vriesi võrrandi raames. 

Töö teises osas saadud tulemused on praktiliselt rakendatavad nii Tallinna 
lahes kui ka teistes suhteliselt madala loodusliku lainetuse intensiivsusega piir-
kondades (kiirlaevaliiklusega järved, Aasovi Meri, Musta Mere loodepiirkond ja 
mõningad alad Vahemeres) kiirlaevade keskkonnamõju ja insenertehnilistele 
rajatistele tekkiva mõju kvantifitseerimisel ning kiirlaevaliiklust reguleerivate 
eeskirjade väljatöötamisel, aga ka insenertehniliste rajatiste projekteerimisel 
rannavööndis. 
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Väitekirja tulemused 
 
1. On välja töötatud efektiivne arvutusskeem Rossby lainete kineetilise 

võrrandi numbriliseks lahendamiseks kahekihilise ookeanimudeli jaoks ja 
vormistatud see programmipaketina. On lahendatud mitmed matemaatilis-
tehnilised probleemid, sh resonantsikõverate geomeetria kirjeldamine, 
vastavate singulaarsete päratute integraalide teisendamine arvutuslikult 
sobivale kujule, topeltresonantsi käsitlemine, peaaegu tsonaalsele voola-
misele vastavas arvutuspiirkonna osas kõrgema lahutusega skeemi rakenda-
mine ning optimaalse arvutuspiirkonna valiku küsimus. 

2. On teostatud erinevat tüüpi Rossby lainete süsteemide (algselt isotroopne, 
algselt tsonaalse ülekaaluga, algselt meridionaalse ülekaaluga) pikaajalise 
evolutsiooni arvutus ning identifitseeritud erinevat tüüpi lainesüsteemide 
evolutsiooni põhijooned. Arvutused on tehtud tüüpiliste ookeani tingimuste 
jaoks, kus ülemise ja alumise kihi paksuste suhe on 1:5. 

3. On näidatud, et Rossby lainete barotroopse moodi evolutsioon kahekihilises 
mudelis sarnaneb põhijoontes barotroopsete Rossby lainete evolutsioonile. 
Kõikidel vaadeldud juhtudel esineb teatava osa energia ülekanne neile 
liikumise komponentidele, mis on suunatud peaaegu piki laiuskraade. Teisi-
sõnu, on näidatud, et ka kahekihilises mudelis tekib peaaegu tsonaalne 
voolamine (liikumine geograafiliste paralleelide suunas). 

4. On näidatud, et väga erinevate algtingimuste puhul tekib suhteliselt kiiresti 
selline lainete süsteem, mis vastab tugevale barotroopsele peaaegu tsonaal-
sele voolamisele. Seejuures ei pruugi barokliinse moodi puhul ilmneda 
selget tendentsi tsonaalse komponendi ülekaalu tekkimisele ning see mood 
paljudel juhtudel muutub praktiliselt isotroopseks. Peamise osa tsonaalse 
voolamise kujunemisse annavad Rossby lained, mille pikkus on samas 
suurusjärgus nn. barokliinse Rossby raadiusega, mis iseloomustab sünopti-
liste liikumiste iseloomulikku mastaapi konkreetsel merealal. Selliste lainete 
pikkus on avaookeanis mõnikümmend kuni 100 km ja perioodi mõni-
kümmend ööpäeva. Läänemere avaosas on tõenäoline, et tsonaalse voola-
mise asemel tekib piki põhja samasügavusjooni suunatud liikumine, mille 
kujundavad 10–20 km (Soome lahes 1–5 km) pikkusega topograafilised 
Rossby lained. 

5. Arvutustulemuste alusel on püstitatud hüpotees, et Rossby lainete süsteemid 
mitmekihilises keskkonnas evolutsioneeruvad üldiselt sellise liikumiste 
süsteemi suunas, mille barotroopses moodis domineerib tsonaalne voola-
mine, kuid ülejäänud moodid on põhiosas isotroopsed (Märkus: paralleelsed 
uuringud sama numbrilise meetodi baasil (Soomere, Phys. Rev. Lett. 1995) 
näitasid, et kõrgemates moodides on teatavatel tingimustel võimalik ka 
meridionaalse voolamise ülekaalu tekkimine ja mitmeastmeline arenemine 
termodünaamilise tasakaalu suunas). Selline mehhanism võib osutuda olu-
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liseks jugavoolude asendi muutumisel ja polaarfrondi meandrite tekki-
misel.) 

6. On näidatud, et multimodaalse (antud juhul barotroopsest ja ühest barokliin-
sest moodist koosneva) Rossby lainete süsteemi evolutsioon toimub üld-
juhul kiiremini kui sama energiaga, kuid puhtalt barotroopse lainesüsteemi 
evolutsioon. Teisisõnu, barokliinne mood mängib Rossby lainete evolut-
sioonis ‘katalüsaatori’ rolli.  

7. On analüüsitud turbulentse segunemise ja topeltdifusiooni koosmõjus 
kujuneva merekeskkonna vertikaalse struktuuri matemaatilise mudeli oma-
dusi. On leitud vastava ilmutatud arvutusskeemi stabiilsust tagavad skeemi 
parameetrite väärtused ning numbriliselt demonstreeritud kihtide tekkimist 
realistlikel eeldustel. Ookeani ja Läänemere tingimuste jaoks tüüpiliste 
temperatuuri ja soolsuse ning turbulentsi kineetilise energia hinnanguliste 
ekstreemsete väärtuste korral on piisav jälgida tingimust 

01.0/)( 2 >∆∆ τh , kus h∆  tähistab ruumi- ja τ∆ ajasammu.  
8. On leitud looduslike lainete tüüpilised ja ekstreemsed parameetrid 

Läänemere avaosa põhjapoolses sektoris teostatud ligikaudu 25 aasta 
pikkuse lainemõõtmiste aegrea alusel. On näidatud, et tuulelainete perioodid 
isegi Läänemere avaosas on tavaliselt 4–6 sekundit ning ulatuvad 10 
sekundini vaid ekstreemsetes tormides ning on seega tavaliselt väiksemad 
kõrgeimate kiirlaevalainete perioodidest. 

9. Otseste lainemõõtmiste alusel on määratletud laevalainete põhilised para-
meetrid Tallinna lahe rannavööndis. On näidatud, et kiirlaevalainete maksi-
maalne kõrgus Tallinna lahel on suhteliselt tagasihoidlik absoluutarvudes 
(päeva kõrgeimad lained ligikaudu 1 m). On demonstreeritud, et suur osa 
kiirlaevalainete energiast on koondunud lainetesse, mille periood 10−15 
sekundit ja kõrgus kuni 1 m. 

10. Laevalainete parameetreid on võrreldud pinnalainete kineetilise võrrandi 
baasil toimiva lainemudeli abil arvutatud Tallinna lahe looduslike lainete 
režiimiga. On näidatud, et 
• looduslik lainetuse intensiivsus on nii madal, et päeva kõrgeimad 

kiirlaevalained kuuluvad aasta 1–5% kõrgeimate lainete hulka; 
• ligikaudu 1 m kõrgusi ja 10–15 s perioodiga looduslikke laineid esineb 

Tallinna lahel äärmiselt harva, mistõttu kiirlaevalained võivad endast 
kujutada kvalitatiivselt uut hüdrodünaamilist mõjutegurit. 

11.  On näidatud, et kiirlaevalainete pikemate ja kõrgeimate komponentide 
(kõrgus üle 0,5 m, periood üle 10 s) puhul muutuvad mittelineaarsed efektid 
märkimisväärseks sügavusel 10–15 m. Eksperimentide käigus salvestatud 
veepinna kuju aegjadade alusel on näidatud, et: 
• pikkade ja kõrgete kiirlaevalainete kuju madalas vees on väga lähedane 

Korteweg-de Vriesi (KdV) võrrandi perioodiliste lahendite – 
knoidaalsete lainete – kujule;  
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• kõrgeimad kiirlaevalained kujutavad endast peaaegu täpseid Korteweg-
de Vriesi solitone. 
Seega võib soovitada KdV võrrandit kiirlaevalainete omaduste kirjelda-
miseks rannalähedases vööndis. 

12.  Knoidaalsete ja siinuslainete omaduste võrdlemise kaudu on demonst-
reeritud, et kiirlaevalainete pikemate ja kõrgemate komponentide poolt 
tekitatud põhjalähedased kiirused teatavates sügavustes Tallinna lahe 
rannavööndis on tõenäoliselt märksa suuremad võrreldes klassikalise 
siinuslainete teooria alusel leitud hinnangutega. 
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