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Nonlinear energy in a wave turbulence system
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Abstract. Single-wavenumber representations of nonlinear energies are required to investigate energy budget due to nonlinear
interactions among Fourier modes in wave turbulence. While we have reported in a previous paper that the single-wavenumber
representations successfully works for the Föppl–von Kármán equation, we will show here that for the Majda–McLaughlin–Tabak
model the single-wavenumber representations of nonlinear energies is not necessarily unique. Introducing auxiliary variables
composed differently from complex amplitudes, two natural representations of the nonlinear energy are obtained. It is numerically
observed that the two kinds of the nonlinear-energy spectra, based on these two representations, are qualitatively similar, but
the energy budgets are clearly different. To select the appropriate single-wavenumber representation of the nonlinear energy, the
properties which an eligible single-wavenumber representation should have are discussed.
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1. INTRODUCTION

In the pioneer work by Zakharov [1], it is shown that the dynamics of many wave turbulence systems are
governed by Hamiltonians. Complex amplitudes are used as elementary waves in the weak turbulence
theory, since they represent linear waves in a canonical representation. The selection of elementary waves
determines the form of nonlinear terms in the Hamiltonian, and it reflects the wave interactions of elementary
waves. The energy of a wavenumber has been represented as quadratic quantities of the complex amplitudes
in studies of the weak turbulence systems. Namely, only the linear part of energy has been considered under
the assumption of small nonlinearity. However, the integrated quadratic energy, which is obtained by the
integration of the quadratic energy over the wavenumbers, is not conserved in general but conserved only in
the weakly nonlinear limit.

In the finite nonlinear regime, the quadratic energy is inappropriate for the investigation of the energy
budgets because of its nonconservativity. The nonequilibrium statistically-steady state of wave turbulence is
realized in the scales called the inertial subrange between energy-input scales and energy-dissipation scales.
Then, the energy fluxes estimated by the energy input and/or the energy dissipation [2,3] have sometimes
been used to evaluate the energy flux in the inertial subrange. However, such energy fluxes are dominated
by the forcing-range statistics and the dissipation-range statistics. The energy flux as well as the energy
transfer should be evaluated directly from the nonlinear term of the governing equation. The quadratic-
energy flux obtained in first-principle direct numerical simulations, e.g. [4], is non-zero at the smallest or
largest wavenumbers.
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A single-wavenumber representation of the nonlinear energy is indispensable to investigate the energy
budget of a wavenumber mode. However, the nonlinear parts of the Hamiltonian consist of the convolution,
and they cannot be represented by the nonlinear energy with a single wavenumber in a quadratic form of
the complex amplitudes. Recently, a single-wavenumber representation of the nonlinear energy is found
in elastic-wave turbulence governed by the Föppl–von Kármán equation [5]. The forward cascade of the
energy is reported there in the well-defined manner for the first time, where the detailed energy balance is
also confirmed. It is expected to examine how it works in other wave turbulence systems.

To be motivated by the success of the single-wavenumber representation of the nonlinear energy in the
elastic-wave turbulence, the properties of such representation are examined here in the Majda–McLaughlin–
Tabak (MMT) model [6] as an example of the simplest wave turbulence system. The MMT model
is a one-dimensional wave turbulence system that has many interesting characteristics depending on its
parameters. It was reported that four statistically-steady states consistent with the weak turbulence theory
and one statistically-steady state inconsistent with the theory [6–9]. Moreover, it was also reported that
their coexistence and nonlocal interactions in the wavenumber space [7–9], and coherent structures such as
solitons, quasisolitons, and quasibreathers [10,11].

Two natural single-wavenumber representations of the nonlinear energy are found in the MMT model,
and we will report here numerical results obtained from the two representations. The nonuniqueness of the
two single-wavenumber representations of the nonlinear energy in the MMT model results in the different
appearances of energy spectra and energy budgets, which stem mainly from the nonlocal interactions
among modes. From the viewpoint of the energy budgets, the appropriateness of the single-wavenumber
representations is discussed.

2. MMT MODEL AND ITS ENERGY

The MMT model is a model for wave turbulence systems which have four-wave nonlinear interactions. In
the MMT model, the Hamiltonian is given by the complex amplitudes ak as

H = ∑
k
|k|α |ak|2 +

λ
2 ∑

k+k1−k2−k3=0
(|k||k1||k2||k3|)−σ a∗ka∗k1

ak2ak3 , (1)

where the parameter α > 0 determines the linear dispersion relation, and the parameters λ = ±1 and σ
determine the nonlinear interactions. Note that the MMT model can reproduce various kinds of wave
turbulence by changing the parameter values. The governing equation of the complex amplitude for a
wavenumber k ∈ Z is given as a canonical equation:

∂ak

∂ t
=−i

δH

δa∗k
=−i|k|αak − iλ ∑

−k1+k2+k3=k
(|k||k1||k2||k3|)−σ a∗k1

ak2ak3 . (2)

Note that ak is not the complex conjugate of a−k.
The MMT model has three conservatives: the total energy, the wave action, and the momentum. The

total energy is the Hamiltonian of Eq. (1), and the wave action and the momentum are respectively defined
as ∑k |ak|2 and ∑k k|ak|2. It should be emphasized that the total energy, i.e., the Hamiltonian, includes
the quartic form of ak, while the latter two conservatives are expressed in quadratic forms of the complex
amplitudes. We here define the linear energy H L and the nonlinear energy H N respectively for the first
and the second terms in the right-hand side of Eq. (1).

If we introduce two auxiliary variables,

bk = ∑
k1+k2=k

(|k1||k2|)−σ ak1ak2 , and ck = ∑
k1−k2=k

(|k1||k2|)−σ a∗k1
ak2 , (3)
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then the nonlinear part of the Hamiltonian (1) can be rewritten respectively as

H N = ∑
k

λ
2
|bk|2, and H N = ∑

k

λ
2
|ck|2. (4)

Namely, the nonlinear energy of k can be defined naturally as a single-wavenumber mode by the two
auxiliary variables,

Eb
k =

λ
2
|bk|2, and Ec

k =
λ
2
|ck|2. (5)

As the first step to investigate the energy budget, we focus our attention on the energy transfer and the
energy flux. The energy transfer is defined as the time derivative of the energy. Thus, the linear-energy
transfer is defined as

T L
k =

∂EL
k

∂ t
= |k|αa∗k

∂ak

∂ t
+ c.c.=−iλ |k|α ∑

−k1+k2+k3=k
(|k||k1||k2||k3|)−σ a∗ka∗k1

ak2ak3 + c.c. (6)

The total-energy transfers are defined as

T Tb
k =

∂ (EL
k +Eb

k )

∂ t
= T L

k +

(
λ
2

b∗k
∂bk

∂ t
+ c.c.

)
, and T Tc

k =
∂ (EL

k +Eck)

∂ t
= T L

k +

(
λ
2

c∗k
∂ck

∂ t
+ c.c.

)
, (7)

where the time derivatives ∂bk/∂ t and ∂ck/∂ t are obtained by Eqs (2) and (3).
The total-energy fluxes are defined as

PTb
k =− ∑

|k′|≤k
T Tb

k′ , and PTc
k =− ∑

|k′|≤k
T Tc

k′ . (8)

Because of the energy conservation, the fluxes at the maximal wavenumber are exactly 0, i.e., PTb
∞ =PTc

∞ =
0. In other words, these fluxes satisfy PTb

k =∑|k′|>k T Tb
k′ and PTc

k =∑|k′|>k T Tc
k′ . After the conventional flux,

the linear-energy pseudo-flux can be defined as

PL
k =− ∑

|k′|≤k
T L

k′ , (9)

though it is not an actual flux but a spurious flux since the linear energy is not conservative. It means that
PL

∞ ̸= 0. Moreover, PL
k ̸= ∑|k′|>k T L

k′ .

3. NUMERICAL RESULTS

We performed numerical simulations of the MMT model, where external force Fk, drag Ds
k and dissipation

Dl
k are added to obtain a statistically-steady state as

∂ak

∂ t
=−i

δH

δa∗k
+Fk −Ds

k −Dl
k. (10)

The periodic boundary condition with 2π is assumed. The pseudo-spectral method with the aliasing
removal by the 4/2-law is used to obtain the convolution in the nonlinear term. The number of the aliasing-
free modes is Nmax = 214. The random external force Fk that is time-uncorrelated acts at small wavenumbers
3 ≤ |k| ≤ 8. The drag Ds

k is added at smaller wavenumbers as Ds
k = γak for |k| ≤ 2, and the dissipation
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Fig. 1. Linear- and nonlinear-energy spectra. The abscissa is linearly scaled for k ≤ 1 and logarithmically scaled for k ≥ 1. Each
subrange is shown on the top axis: “H.H.”, “W.T.” and “E.F.” stand respectively for the higher harmonics, weak turbulence, and the
external force.

Dl
k is added at large wavenumbers as Dl

k = ν(|k|− kd)
4ak for |k|> kd = Nmax/8 = 2048 where γ and ν are

constant parameters. These ranges do not overlap each other, and the dynamics of the wavenumber modes
in the range 8 < |k| ≤ 2048 is affected by none of external force, drag, and dissipation. The parameters of
the MMT model are selected as α = 1/2, σ =−3/4, and λ = 1 to mimic the deep-water gravity waves [11].
The fourth-order Runge–Kutta method is used for the time integration.

Because of the statistical isotropy, we define the linear-energy spectrum as E L
k = EL

k + EL
−k, the

nonlinear-energy spectrum based on bk as E b
k = Eb

k +Eb
−k, and that based on ck as E c

k = Ec
k +Ec

−k. Such
spectra obtained in the numerical simulation are drawn in Fig. 1. While the linear energy has large values in
the forcing range, the nonlinear energies have in the higher harmonic range 6 ≤ k ≤ 16. The linear energy
is much larger than the nonlinear energies in the energy-containing range. Thus, H L ≫ H N. On the other
hand, the linear energy is much smaller than the nonlinear energies in the drag range. It is due to the fact
that the nonlinear energies come from ak’s in other ranges. In the dissipation range k > kd = 2048, both of
the nonlinear energies, based on bk and that based on ck are larger than the linear energy.

The energy spectra E L
k , E b

k , and E c
k in the inertial subrange 10 / k / 2×103, cannot be represented by

a single power law. These energy spectra in the smaller wavenumber range 10 / k / 30 show a very steep
power law consistent with the very small nonlinearity there. The modes in this range play the energy source
for the modes in the larger wavenumber range 2×102 / k / 2×103, where the linear-energy spectrum E L

k
is close to the MMT spectrum, while the nonlinear-energy spectrum E c

k has a less steep slope. Note that the
exponent of the MMT spectrum is α +2σ −5/4 =−9/4 [8].

Though the two nonlinear energies E b
k and E c

k have qualitatively similar forms, they have different
values. The nonlinear spectra in the inertial subrange are almost parallel, because the nonlinear energies for
a wavenumber k are written respectively as

1
2
⟨|bk|2⟩ ≈ ∑

k1+k2=k
(|k1||k2|)−2σ ⟨|ak1 |

2⟩⟨|ak2 |
2⟩,

1
2
⟨|ck|2⟩ ≈

1
2 ∑

k1+k2=k
(|k1||k2|)−2σ ⟨|ak1 |

2⟩⟨|ak2 |
2⟩+ 1

2
δk,0

(
∑
k1

|k1|−2σ ⟨|ak1 |
2⟩
)
,

(11)

if the random phase approximation can be applied over all the wavenumbers and the system is statistically
isotropic. In fact, as shown in Fig. 1, E c

k ≈ E b
k /2 in the range 10 < k < 30, where the nonlinearity is weak,

while E c
k ≪ E b

k in the range k > 102, where the nonlinearity is relatively strong. This result suggests the
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Fig. 2. Linear-energy transfer and total-energy transfers. The inset shows the enlargement of the dissipation range. The abscissa is
linearly scaled for k ≤ 1 and logarithmically scaled for k ≥ 1.

existence of nonlocal direct interactions from c0 in the representation of the auxiliary variable ck. The
largest values of the nonlinear energies appear at k = 0. The nonlinear energies of the zero mode are written
as Eb

0 = |b0|2/2 = |∑k′ |k′|−2σ ak′a−k′ |2/2 and Ec
0 = |c0|2/2 = |∑k′ |k′|−2σ |ak′ |2|2/2. Thus, 0 ≤ Eb

0 ≤ Ec
0 ,

which is proven by the Cauchy–Schwarz inequality. Our numerical simulation shows Eb
0 ≈ 2.2× 10−5

and Ec
0 ≈ 3.1× 10−5. Since both summations in Eq. (4) give the same nonlinear part of the Hamiltonian,

the relation E b
k > E c

k holds for most wavenumbers. In fact, E b
k is much larger than E c

k mostly, and it is
inconsistent with Eq. (11), i.e., the weak turbulence theory.

As is the case with the energy spectra, we define three energy transfers: the linear-energy transfer,
T L

k = T L
k + T L

−k, the total-energy transfer based on bk, T Tb
k = T Tb

k + T Tb
−k , and the total-energy transfer

based on ck, T Tc
k = T Tc

k + T Tc
−k . These transfers are drawn in Fig. 2. The energy transfers have large

magnitudes in the forcing range 3 ≤ k ≤ 8, though the fluctuations are very large. The positive and negative
values seen there show that the energy budget is not so simple even in the forcing range. The modes in the
positive range receive energy while the modes in the negative range provide energy, though the all-inclusive
representations (6) and (7) cannot resolve whether it is due to the random external forces or to the nonlinear
interactions. Although the values in the dissipation range k ' 2× 103 are difficult to see in Fig. 2, the
amounts of them are statistically the same as that of energy input because of the steadiness of the system,
which can be recognized by considering the wide horizontal range. The transfers, T Tb

k and T L
k , are positive

in the dissipation range, and the former is much larger than the latter. The transfer T Tc
k , however, changes

its sign from negative to positive in the dissipation range.
The transfer T Tc

k is much different from the other two T Tb
k and T L

k . At k = 0, both T Tb
0 and T Tc

0 are
positive, because the zero modes of the nonlinear energies receive energy while that of the linear energy
cannot by definition. For T Tc

k , furthermore, the large positive values appear in the drag range and the
negatively large values appear in the forcing range. In the inertial subrange, the values of T Tc

k is always
negative, while the values of T Tb

k fluctuate around 0. In this sense, there exists no range where the energy
cascades if we use ck as the auxiliary variable.

The linear-energy pseudo-flux and the total-energy fluxes are drawn in Fig. 3. The linear-energy pseudo-
flux is spurious because it breaks the energy conservation [4]. Therefore, the pseudo-flux is physically
inappropriate, because it stems from the continuity equation of energy. Both of the total-energy fluxes are
0 at the maximal wavenumber, and are consistent with the energy conservation. However, their values at
other wavenumbers are completely different. In the inertial range, the values of PTb

k are positive and almost
constant, while those of PTc

k are negative and increase as the wavenumbers become large. These negative
values of PTc

k result from the negatively large value of the flux at k = 0. It reflects the large value of the
energy transfer there shown in Fig. 2.
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Fig. 3. Linear-energy pseudo-flux and total-energy fluxes. The abscissa is linearly scaled for k ≤ 1 and logarithmically scaled for
k ≥ 1.

Figure 3 indicates that the total-energy fluxes depend on which mode is selected as an elementary wave.
When one uses bk as an elementary wave, we observe that the wave field receives the energy from the
external force, the energy cascades in the inertial subrange, and the energy is dissipated in the dissipation
range. When one uses ck as an elementary wave, on the other hand, the large contribution of the total-energy
transfer at k = 0 and the non-constancy of the total-energy flux in the inertial subrange suggest that the
energy is not transferred as step-by-step cascades, but by nonlocal interactions in the wavenumber space.
These difference appears also in Fig.1: the power spectrum of E c

k around k ≈ 103 is shallower and wider than
that of E b

k . In the range 20 / k / 200, both total-energy fluxes PTb
k and PTc

k , similarly to the nonlinear-
energy spectra E b

k and E c
k , are almost parallel, but their values and even their signs are different, as seen in

Fig. 3.

4. CONCLUDING REMARKS

The single-wavenumber representations of the nonlinear energy in the wave turbulence systems is examined
in the MMT model in order to take our understanding in [5] one step further. The two natural single-
wavenumber representations of the nonlinear energy are found in the MMT model. One is based
on an auxiliary variable bk = ∑k1+k2=k(|k1||k2|)−σ ak1ak2 , and the other on the other auxiliary variable
ck = ∑k1−k2=k(|k1||k2|)−σ a∗k1

ak2 . The two natural representations indicate that the representations are not
necessarily unique in the MMT model. It is in contrast with the unique representation in the elastic-wave
turbulence, reported in [5].

Our numerical simulation of the MMT model reveals the following facts. While the two kinds of the
nonlinear-energy spectra are qualitatively similar, the two total-energy transfers as well as the two total-
energy fluxes are different at the zero mode and in the inertial subrange. The most noticeable difference
is that the total-energy flux based on ck is not constant in the inertial subrange while that based on bk is
constant. Furthermore, even their signs are different from each other.

The differences come mainly from the interactions between the zero mode and other modes. The zero
mode of bk, i.e., b0 = ∑k |k|−2σ aka−k comes from the interaction between ak and a−k. On the other hand,
the zero mode of ck, i.e., c0 = ∑k |k|−2σ |ak|2 comes from the selfinteraction of ak. The apparent nonlocal
interactions between c0 and ak (and ck) where the wavenumber k is in the inertial subrange make the
nonconstant energy flux of PTc in the inertial subrange. If we believe the energy cascade, the auxiliary
variable bk is preferable to ck. However, the nonlocal interactions are reported in the focusing MMT model
with λ =−1 [8], and the nonlocal interactions might play a dominant role in the present system. Therefore,
the appropriateness of the representation including the possibility of a more appropriate auxiliary variable
should be judged carefully.
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Lastly, it may be interesting to point out that if ak were complex conjugates of a−k such as the Fourier
coefficient of a real variable, the auxiliary variables bk and ck would become complex conjugates of each
other as known from the definition (3). In this sense, the differences observed above stem from the
non-conjugacy of ak with a−k. The MMT model as well as the auxiliary variables bk and ck is merely
mathematical and arbitrary to some extent. The nonlinear energy in the MMT model is in contrast to that
in the elastic-wave turbulence [5], which gives the stretching energy and has a physical meaning itself. If
we restrict the initial conditions of ak and the external force Fk to have this complex conjugacy in the MMT
model, the nonlinear energies based on the two auxiliary variables become identical, and we may be able to
investigate the energy budget in more detail. Furthermore, we can develop the MMT model by considering
the physically plausible characteristics. The study along this line is currently in progress and will be reported
elsewhere.
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Mittelineaarsete lainete energia turbulentsi tüüpi lainesüsteemides

Naoto Yokoyama ja Masanori Takaoka

Turbulentsi tüüpi mittelineaarsete lainesüsteemide üksikute komponentide energia bilansi ja mittelineaarsete
interaktsioonide põhjustatud energiavahetuse arvutamisel on tarvis klassikaline (lainekõrguse ruuduga
võrdeline) energia kontseptsioon asendada keerukama mittelineaarse funktsiooniga. On näidatud, et selline
üldistus pole ühene ja võivad eksisteerida erinevad, kuigi teatavas mõttes ekvivalentsed võimalused. Näitena
on vaadeldud Majda-McLaughlini-Tabaki mudelit. Üksikute lainekomponentide kompleksseid amplituude
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esitavaid abimuutujaid saab selle mudeli raames konstrueerida mitmel moel. Komponentide energia kirjel-
damiseks on vaadeldud kaht mõistlikku alternatiivi. Arvutisimulatsioonide abil on näidatud, et energia
selliste mittelineaarsete analoogide spektrid on kvalitatiivselt sarnased, kuid nii üksikute lainekomponentide
energia kui ka interaktsioonides edasi kanduv energia võib erinev olla. On visandatud selliste piirangute
võimalused, mille korral üksikute lainekomponentide energia üldistust saaks üheselt määratleda.


