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Abstract. We describe the field of rational constants of the four-variable Volterra derivation. Thus, we determine all rational first
integrals of its corresponding system of differential equations. Such derivations play a role in population biology, laser physics, and
plasma physics. Moreover, they play an important part in the derivation theory itself, since they are factorizable derivations. The
problem is also linked to the invariant theory.
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1. INTRODUCTION

The main result of the paper is Theorem 2, which gives
the description of the field of rational constants of the
four-variable Volterra derivation. The motivations of our
study are the following:
• applications of Volterra and Lotka–Volterra systems

in population biology, laser physics, and plasma
physics (see, for instance, [1,3]);

• Lagutinsky’s procedure of the association of the
factorizable derivation (examples of such derivations
are Lotka–Volterra derivations) with any given
derivation;

• link to the invariant theory (for every connected
algebraic group G ⊆ GLn(k) there exists a derivation
d such that k[X ]G = k[X ]d , see [7]).

Let us fix some notations:
k – a field of characteristic zero,
N – the set of nonnegative integers,
n – an integer ≥ 3,
k[X ] := k[x1, . . . ,xn],
k(X) := k(x1, . . . ,xn).

Recall that if R is a commutative k-algebra, then a
k-linear map d : R → R is called a derivation of R if for
all a,b ∈ R

d(ab) = ad(b)+d(a)b.

We call Rd = kerd the ring of constants of the derivation
d. Then k ⊆ Rd and a nontrivial constant of d is an
element of the set Rd \ k. If f1, . . . , fn ∈ k[X ], and there

exists exactly one derivation d : k[X ] → k[X ] such that
d(x1) = f1, . . . ,d(xn) = fn. A derivation d : k[X ] →
k[X ] is said to be factorizable if d(xi) = xi fi, where
the polynomials fi are of degree 1 for i = 1, . . . ,n. We
may associate the factorizable derivation with any given
derivation of k[X ], and that construction helps to establish
new facts on constants, especially rational constants, of
the initial derivation (see, for instance, [6,8]).

There is no general effective procedure for determin-
ing k[X ]d of a derivation d : k[X ] → k[X ], nor even
deciding whether it is finitely generated (it may not be
finitely generated for n ≥ 4, see [5]). Even for a given
derivation the problem may be difficult, see for instance
counterexamples to Hilbert’s fourteenth problem (all of
them are of the form k[X ]d ; however, it took more than
half a century to find at least one of them, for more details
we refer the reader to [5,7]) or Jouanolou derivations
(where the rings of constants are trivial, see [6,7]).

2. LOTKA–VOLTERRA DERIVATIONS

Let C1, . . . ,Cn ∈ k. From now on, d : k[X ] → k[X ] is a
derivation of the form

d(xi) = xi(xi−1−Cixi+1)

for i = 1, . . . ,n (we adhere to the convention that xn+1 =
x1 and x0 = xn). We call d a Lotka–Volterra derivation
with parameters C1, . . . ,Cn.



134 Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 133–135

We will call a polynomial g ∈ k[X ] strict if it
is homogeneous and not divisible by the variables
x1, . . . ,xn. For α = (α1, . . . ,αn) ∈ Nn, we denote by
Xα the monomial xα1

1 . . .xαn
n ∈ k[X ]. Every nonzero

homogeneous polynomial f ∈ k[X ] has the unique
representation f = Xα g, where Xα is a monomial and
g is strict.

A nonzero polynomial f is said to be a Darboux
polynomial of a derivation δ : k[X ]→ k[X ] if δ ( f ) = Λ f
for some Λ ∈ k[X ]. We will call Λ a cofactor of f . Thus,
constants of a derivation δ are precisely its Darboux
polynomials with cofactor 0. Denote by k[X ](m) the
group of homogeneous polynomials of k[X ] of degree m.
A derivation δ : k[X ] → k[X ] is called homogeneous of
degree s if δ (k[X ](m)) ⊆ k[X ](m+s) for every m. Since d
is a homogeneous derivation of degree 1, the cofactor of
each homogeneous polynomial is a linear form.

Lemma 1. ([12] 3.2). Let n = 4. Let g ∈ k[X ](m)
be a Darboux polynomial of d with the cofactor
λ1x1 + . . . + λ4x4. Let i ∈ {1,2,3,4}. If g is not
divisible by xi, then λi+1 ∈ N. More precisely, if
g(x1, . . . ,xi−1,0,xi+1, . . . ,x4) = xβi+2

i+2 G and xi+2 6 |G, then
λi+1 = βi+2 and λi+3 =−Ci+2λi+1.

Corollary 1. ([12] 3.3). Let n = 4. If g ∈ k[X ] is a strict
Darboux polynomial of d, then its cofactor is a linear
form with coefficients in N.

If Ci = 1 for all i, then we call d a Volterra derivation.
Such derivations were investigated for example in [2],
[4], and [10].

Lemma 2. All strict Darboux polynomials of the
4-variable Volterra derivation are its constants.

Proof. Let Λ = λ1x1 + . . . + λ4x4 be the cofactor of
a strict Darboux polynomial of the 4-variable Volterra
derivation. By Lemma 1 we have

λi+3 =−λi+1 (2.1)

for all i in the cyclic sense. However, Corollary 1 gives
λi ∈N for i = 1, . . . ,4. Then the left-hand side of (2.1) is
nonnegative, whereas its right-hand side is nonpositive.
Consequently, λ1 = . . . = λ4 = 0 and thus Λ = 0. 2

3. THE FIELD OF RATIONAL CONSTANTS

We show how to use the results of the previous section
to determine the field of rational constants. For any
derivation δ : k[X ] → k[X ] there exists exactly one
derivation δ̄ : k(X) → k(X) such that δ̄|k[X ] = δ . By
a rational constant of the derivation δ : k[X ] → k[X ]
we mean the constant of its corresponding derivation
δ̄ : k(X)→ k(X). The rational constants of δ form a field.
For simplicity, we write δ instead of δ̄ .

Throughout the rest of this paper we assume n = 4
and C1 = C2 = C3 = C4 = 1, that is, d is the four-
variable Volterra derivation. We know the ring of poly-
nomial constants of d (and we use this in the proof of
Theorem 2).

Theorem 1. ([9] 3.1). If d is the four-variable Volterra
derivation, then

k[X ]d = k[x1 + x2 + x3 + x4,x1x3,x2x4].

A generalization of Theorem 1 can be found in [11].
We also need the following facts.

Proposition 1. ([7] 2.2.2). Let δ : k[X ] → k[X ] be a
derivation and let f and g be nonzero relatively prime
polynomials from k[X ]. Then δ ( f

g ) = 0 if and only if
f and g are Darboux polynomials of δ with the same
cofactor.

Proposition 2. ([7] 2.2.3). Let δ be a homogeneous
derivation of k[X ] and let f ∈ k[X ] be a Darboux poly-
nomial of δ with the cofactor Λ ∈ k[X ]. Then Λ is homo-
geneous and each homogeneous component of f is also
a Darboux polynomial of δ with the same cofactor Λ.

Proposition 3. ([7] 2.2.1). Let δ be a derivation of k[X ].
If f ∈ k[X ] is a Darboux polynomial of δ , then all factors
of f are Darboux polynomials of δ .

Now we can describe the field of rational constants
of d.

Theorem 2. If d is the four-variable Volterra derivation,
then

k(X)d = k(x1 + x2 + x3 + x4,x1x3,x2x4).

Proof. A short calculation gives d(x1 +x2 +x3 +x4) = 0,
d(x1x3) = 0, and d(x2x4) = 0. Thus we have k(x1 +
x2 + x3 + x4,x1x3,x2x4) ⊆ k(X)d . We need to prove the
inclusion k(X)d ⊆ k(x1 + x2 + x3 + x4,x1x3,x2x4).

Let then ψ = f
g ∈ k(X)d , where f ,g ∈ k[X ] \ {0}

and gcd( f ,g) = 1. Since d(ψ) = 0, by Proposition 1
both f and g are Darboux polynomials of d with
common cofactor Λ. Let Λ = ax1 + bx2 + cx3 + ex4,
where a,b,c,e ∈ k. By Proposition 2 all homogeneous
components of both f and g are also Darboux
polynomials of d with the same cofactor Λ. Consider one
of these components h = xr

1xs
2xt

3xu
4h̄, where h̄ is strict. It

is easy to prove, using induction on r + s+ t +u, that

d(xr
1xs

2xt
3xu

4) = xr
1xs

2xt
3xu

4((s−u)x1

+(t− r)x2 +(u− s)x3 +(r− t)x4).

By Proposition 3, h̄ is a Darboux polynomial of d.
Hence, by Lemma 2, h̄ is a constant of d. Therefore we
have

d(h) = h((s−u)x1 +(t− r)x2 +(u− s)x3 +(r− t)x4),
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that is, h is a Darboux polynomial of d with cofactor
(s−u)x1 +(t− r)x2 +(u− s)x3 +(r− t)x4 which, on the
other hand, must be Λ. Consequently we have equations:

a = s−u =−c, b = t− r =−e.

Therefore a,b,c,e ∈ Z. Assume first that a > 0.
Then s = u+a > 0, which means that x2 | h. Since h was
chosen as an arbitrary homogeneous component of f or
g, we have x2 | f , x2 | g, a contradiction with gcd( f ,g) =
1. Similarly, assuming a < 0, we get u = s−a > 0
yielding a contradiction x4 | f , x4 | g. This proves a =
c = 0, and one can use similar arguments for proving
b = e = 0. We have proven that Λ = 0, that is, both f
and g are constants of d. Thus, by Theorem 1, f ,g ∈
k[x1 + x2 + x3 + x4,x1x3,x2x4] but then obviously ψ ∈
k(x1 +x2 +x3 +x4,x1x3,x2x4). 2

Note that in view of Theorems 1 and 2, if d is the
four-variable Volterra derivation, then k(X)d is the field
of fractions of k[X ]d (which is not true in general).

4. CONCLUSIONS

If δ is a derivation of k(X) such that δ (xi) = fi for
i = 1, . . . ,n, then the set k(X)δ \ k coincides with the
set of all rational first integrals of a system of ordinary
differential equations

dxi(t)
dt

= fi(x1(t), . . . ,xn(t)),

where i = 1, . . . ,n (for more details we refer the reader
to [7] 1.6). Therefore, we described both all rational
constants of the four-variable Volterra derivation and all
rational first integrals of its corresponding system of
differential equations. We believe that Lemma 1 would
be useful for solving the problem also for arbitrary four-
variable Lotka–Volterra derivations.
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Volterra tuletise ratsionaalsete konstantide korpus

Janusz Zieliński

On antud neljamuutuja Volterra tuletise ratsionaalsete konstantide korpuse kirjeldus. Sellest järeldub vastava diferent-
siaalvõrrandite süsteemi ratsionaalsete esimeste integraalide kirjeldus. Sellistel tuletistel on rakendusi populatsiooni-
bioloogias, laser- ja plasmafüüsikas.


