
R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 151

Proceedings of the Estonian Academy of Sciences,
2014, 63, 2, 151–162

doi: 10.3176/proc.2014.2.05
Available online at www.eap.ee/proceedings

Environment for the analysis of functional self-test quality
in digital systems

Raimund Ubar*, Sergei Kostin, Helena Kruus, Margit Aarna, and Sergei Devadze

Department of Computer Engineering, Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia

Received 3 February 2014, revised 24 March 2014, accepted 25 March 2014, available online 20 May 2014

Abstract. Dependability of computer architectures has become one of the most important engineering concerns. One of the
possibilities to increase the dependability is to develop architectures with dedicated self-test capabilities which allow achieving
high quality of testing in terms of fault coverage. We propose a new methodology for Built-in Self-Test (BIST), which combines
the inherent functionality of the architecture with a small amount of pre-generated test data stored in the memory, and uses for
monitoring of the test process a restricted number of test points, configured as a set of signature analysers. Contrary to the
traditional scan-path based logic BIST, the proposed solution does not need additional hardware for test pattern generation, and
will not have any impact on the working performance of the system. On the other hand, testing at normal working conditions
allows exercising the system on-line and at-speed, facilitating the detection of dynamic faults like delays and crosstalks to achieve
high test quality. The new self-test method is free from the negative aspect of over-testing, compared to the traditional logic BIST
approaches. A method is presented to generate optimized test data for selected test routines, and to choose minimum set of test-
points for response analysis. A tool framework is proposed to emulate self-testing architectures, and to carry out fault simulation
for evaluating the test quality in terms of fault coverage.

Key words: self-test architectures, logic built-in self-test, software based self-test, faults, design for testability.

1. INTRODUCTION
*
Computer architectures and embedded processors are
used in a wide range of application areas, from enter-
tainment (smart phones, portable game consoles), to
professional equipment (palmtops, digital cameras), and
control systems in various fields (automotive, industry,
telecommunications). Safety constraints in many of
these areas require periodically checking whether the
computing system is still correctly running, or if it is
affected by a fault [1].

The technology advancements impose new challenges
to testing systems-on-chip as device geometries shrink,
and deep-submicron delay defects are becoming more
prominent requiring more accurate tests than before [2].
Therefore testing of digital systems in dynamics by so-
called at-speed testing has become a must. However, as
the speed of microprocessors has reached GHz ranges,
at-speed testing is increasingly difficult with traditional
external test equipment.

* Corresponding author, raiub@pld.ttu.ee

The increasing size and complexity of micropro-
cessor architectures directly reflects in more demanding
test generation and application strategies. Modern
designs implementing complex architectures, pipelined
and superscalar designs have been demonstrated to be
random pattern resistant [1]. Use of scan chains has
proven to be often inadequate, producing overhead [3],
excessive power dissipation during test [4] or leading to
overtesting and yield loss [5].

A lot of research has been carried out to relieve the
burden of external testers by introducing system self-test
approaches like hardware-based Built-in Self-Test (BIST)
[6] or Software-Based Self-Test techniques (SBST) [1,7].

In logic BIST [6], typical functions of external
testers like test generation and response analysis are
carried out on-chip, so that the tester should not handle
high-speed signals externally and its role should remain
only to send the test signals to the chip under test, and to
receive the pass/fail signals. For example, scan-based
and logic BIST solutions such as [8] relax the require-
ments on testers and considerably reduce the overall
testing cost.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

152

An increasingly popular solution to this challenge is
based on developing suitable test programs, forcing the
processors to execute them, and to check the produced
results. This methodology, SBST [1,7] is particularly
suitable for being applied at the end of manufacturing
and in the field as well, to detect the occurrence of
faults, caused by environmental stresses and intrinsic
aging in embedded systems.

The question is whether a self-test sequence, running
in the system, can adequately exercise its hardware com-
ponents satisfying the targeted fault coverage require-
ments. Achieving the test quality target requires a proper
test sequence generation, which is the focus of the
current paper. It should also be pointed out that the
quality of a test is measured not only by its fault
coverage, but also by its code size, hardware overhead,
and by the test execution time. The goal of the paper is
to propose an approach, which combines the ideas of
traditional logic BIST and processor based SBST to
improve the test quality at less hardware overhead and
avoiding performance loss compared to the traditional
self-test approaches. We call this approach Functional
BIST (FBIST), since the proposed scheme of BIST will
use the inherent functionality of the circuit under test

The rest of the paper is organized as follows. In
Section 2, an overview about the state-of-the-art of self-
test techniques is given, Section 3 introduces a general
scheme of the proposed functional self-testing archi-
tecture, followed in Section 4 by the framework of its
synthesis. Section 5 describes a methodology for high-
level Design for Testability (DFT) to improve the fault
coverage of FBIST, and Section 6 presents an experi-
mental low-level testability analysis set-up. Experi-
mental results are presented in Section 7, and Section 8
concludes the paper.

2. STATE-OF-THE-ART OF SELF-TEST
TECHNIQUES

In traditional logic BIST, test pattern generation is
mostly performed by Linear Feedback Shift Registers
(LFSR) [6], cellular automata [9], or multifunctional
registers like BILBO (Built-in Logic Block Observer)
[10] to apply pseudorandom patterns to the Circuit
Under Test (CUT) and to analyse its output responses.

Unfortunately, many circuits contain Random-
Pattern-Resistant (RPR) faults which limit the fault
coverage that can be achieved by using traditional BIST,
based on pseudorandom patterns. They demand as well
very long test sequences and long test application times
in addition to increased area overhead. Improvements
have been achieved by modifying the CUT by either
inserting test points [11–13], using Weighted Pseudo-
random Sequences (WPS) [14], or by redesigning CUT
to improve fault coverage [15]. The drawback of these

techniques is that they generally involve additional logic
to circuitry that can degrade performance.

Another method to improve fault coverage is to use
“mixed mode” or hybrid approaches [16–22], where
pseudorandom data are combined with deterministic
ones to improve detection of RPR faults, and compared
to WPS less additional hardware is required. The
pseudorandom and deterministic data may be combined
in different ways like using ROM compression [16],
LFSR reseeding [14] either by bit-flipping [17] or bit-
fixing [18], multi-polynomial scheme [19], or embed-
ding deterministic patterns [20].

However, in most of these approaches the archi-
tecture is extremely tailored to the CUT, and any change
in the CUT requires re-synthesis of the complete BIST
hardware. Another drawback of traditional BIST is the
use of special hardware for test pattern generation on
chip, which causes area overhead and performance
degradation.

To overcome these problems, FBIST methods have
been proposed which exploit specific functional units like
adders, multipliers, Arithmetic Logic Units (ALU) or
processor cores for on-chip pseudorandom test generation
and test response evaluation [21–24]. These units are
available in data-path architectures used in traditional
general purpose processors and in digital signal proces-
sing units. The term FBIST describes a test method to
control functional modules so that they generate a test set,
which targets structural faults within other parts of the
system.

Usually these ALU-based FBIST methods are called
Arithmetic BIST (ABIST), since they essentially adopt
the additive congruential generation scheme of pseudo-
random numbers [25]. ABIST, along with the
accumulator-based response compaction scheme [26]
facilitates the BIST strategy for high-performance data
path architectures that use the functionality of existing
hardware, is entirely integrated with CUT, and results in
at-speed testing with no performance degradation and
with little area overhead.

The drawback of using ABIST is the same as is with
traditional LFSR based BIST – selected test pattern
sequences are not capable to detect all RPR faults, which
in turn may lead to low fault coverage. In Fig. 1, a range
of all possible and different patterns, generated by a BIST,
starting with the first pattern 1P up to the last one of the
cycle nP in a pseudorandom order, is shown. For LFSR
with length m the number of all different patterns in this
range will be 2 1.m − Because of the huge number of
patterns the BIST is able to generate, a smaller window
with length 2mN << will be typically used, which how-
ever is not able to cover specific patterns needed for
detecting RPR faults. The latter remain outside of the
window.

R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 153

All possible 2 m – 1 p atterns
the BIST may generate

Selected for testing window
of p seudorandom patterns

RPR
faults

N

P k

P 1 Pn

2m – 1

Fig. 1. Random-pattern-resistant faults detection problem.

Software Based Self-Test as another special case of

FBIST is an approach that has gained increasing
acceptance for testing processor cores and using pro-
cessors for testing other components in Systems-on-
Chip (SoC) [27–31]. SBST moves the test functions also
from external testers to on-chip resources whereas the
test patterns are produced by the processors, using their
native instructions. Usually, in this approach, the test
programs and associated test data are first, loaded into
on-chip memories, and subsequently, these test pro-
grams are executed by the processor at actual/full speed
(at-speed).

The positive features of the SBST technique that
have supported its introduction into a typical micro-
processor test flow are: non-intrusiveness (no need for
any processor modification), no extra power consump-
tion compared to the normal operation mode, at-speed
testing (at the processor’s actual speed) which enables
screening of delay defects that are not observable at
lower frequencies, and no over-testing compared to
the scan-path testing approach. Self-test programs
developed for manufacturing test can be reused in the
field throughout product lifetime.

The problem with SBST is still in generation of high
quality test data – operands to be used by the instruc-
tions which build up the test program. Another problem
is with observability of test responses. Differently from
ABIST, where the responses of the tested blocks are
captured at each clock cycle, in the case of SBST the
results of the processor instructions as responses of the
test are registered only in the end of the testing instruc-
tion (in the end of the sequence of microinstructions).
This may result in a lot of fault masking cases, which
reduces the fault coverage.

In this paper we propose a functional BIST, which
combines clock cycle based response collection as used
in hardwired ABIST with software based flexibility to
extend the restricted application area of ABIST from
specific data-path architectures to a larger class of
processor architectures. The clock cycle based observa-
tion technique allows to avoid fault masking, and
selecting proper instruction sequences supported by

properly generated test data allows to achieve higher
fault coverage. The clock cycle based test response
observation is carried out using built-in Signature
Analysers (SA). The places for inserting SA flip-flops
will be found by profiling of test programs or micro-
programs of testing instructions to find out the most
frequently visited nodes in CUT. This helps to capture
maximum amount of information from the test process
and to achieve high fault coverage.

Another novelty is to combine test program genera-
tion with testability improvement regarding RPR faults
by inserting optimized set of test points into the hard-
ware. The combination of test data generation with DFT
improvement allows to explore different trade-offs
between testing cost and quality. Differently from
[27,28], the sequences of component test patterns are not
needed to store in the chip, they will be generated on-
line by the resources of the system. At the same time, at-
speed testing guarantees high fault coverage.

3. GENERAL SCHEME OF THE FUNCTIONAL
BIST

The main idea of the proposed FBIST concept includes
the use of activated on-chip functional processes as test
pattern generators for a selected CUT and monitoring
the behaviour of CUT by a Multiple Input Signature
Analyser (MISR). MISR is the only additional hardware
needed for the implementation of FBIST. The func-
tionality of the processor is used to apply the test
patterns to each component at-speed. The tests are
delivered by processor instructions and unfolded by
microinstructions from local control units.

Consider a data-path of a processor in Fig. 2 with
ALU as a CUT. The data path consists of a register
block for temporary storing of the data, which

Fig. 2. Functional BIST of a digital system.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

154

participates in the operation carried out in ALU. For
example, during the operation of fractional number
division the register block will store the dividend,
divisor, all intermediate results of division, the quotient,
and the counter of cycles needed for controlling the
whole process of division. The input data from the
register block and the control signals from the control
unit are interpreted as input test patterns for CUT. The
output data from ALU sent back to the register block
and the status signals as feedback to the control unit as
the most frequently visited nodes during the tested
operation are interpreted as responses of CUT, and are
registered in MISR.

As the result of N clock cycles of the division
operation, N functional test patterns are generated on-
line, and consequently, N responses of ALU will be
compressed in the MISR, which is monitoring the whole
division process. The whole microinstruction level test
process is launched by a division instruction, which
includes two operands – the dividend and divisor.

Differently from the known approaches, where the
instructions are regarded as test patterns and the results
of the instructions are regarded as test responses, in the
proposed case all the input patterns of CUT during each
clock cycle of the instruction are regarded as test
patterns with immediate monitoring of the responses of
CUT in each cycle by MISR. As the result, we have
achieved a multiplication effect of N times in the
number of test patterns when moving the test access
from the instruction level to the microinstruction level.
Denote by L the number of bits in the data operands

(dividend and divisor), and by l the number of bits on
the inputs of ALU. Then the reduction in the test data
volume to be stored in the memory through the
compression of test data in the described FBIST scheme
is equal to 2 .R Nl L=

In this scheme, the functional patterns produced
directly on the inputs of ALU have the similar role as
pseudorandom test patterns in classical BIST schemes.
To improve the fault coverage of FBIST, the same
operation can be carried out with different operands. The
problem to be solved is the choice of the best operands
to minimize the length of the whole test procedure.
Similarly to the pseudorandom test, the functional test
patterns may not be able to cover random-pattern-
resistant faults, which limit the fault coverage that can
be achieved with the pure functional BIST approach.
However, the possibility of repeating the same (division)
program with different operands gives the possibility to
exercise different windows of pseudorandom patterns as
explained in Fig. 1 to target the RPR faults. Another
possibility to improve the fault coverage is to use DFT
approach, i.e., to insert additional test points whereas the
observation test points can be integrated with MISR.

4. FUNCTIONAL BIST SYNTHESIS
FRAMEWORK

In Fig. 3, the methodology and framework are shown for
generating functional BIST for processor architectures,

Fig. 3. Functional BIST synthesis methodology for a digital system.

R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 155

which uses the inherent functionality of the processor
(i.e. instruction set or selected working routines) for
implementing test programs. The goal of the framework
is to partition the hardware into components to be tested
(i.e. into a set of CUT), to generate for each CUT the
test data for the related test program to be stored in the
memory, and to improve the testability of CUT to
achieve higher fault coverage of testing.

In the general case, CUT can be specified by pro-
filing the test programs to find out the most frequently
visited nodes in the hardware exercised by the test
program. These nodes will serve as the best places for
inserting MISR. In a particular case, different well
defined subcircuits or components of the data-path like
adders, multipliers and ALU can serve as CUT and the
outputs of these CUT will be used to place MISR.

The framework consists of the following tools: test
program profiler, data path simulator, fault simulator,
test operands generator, and design for testability
advisor.

The goal of the test program profiler is to find out in
the system the best observation places to capture
maximum amount of information from the test process
for achieving as high fault coverage as possible.

The data path simulator is used for finding the
functional test pattern sequences applied to the inputs of
CUT, and is produced by the given sequence of test
instructions with related test operands. The fault
simulator is used for measuring the quality of the
sequence of functional test patterns. If the quality of test
is not satisfied, it will be extended by selecting addi-
tional test instructions or operands. Such a modification
of the test program will be repeated till the test quality is
satisfied.

The bottleneck of the whole process of BIST
synthesis is the speed of the fault simulator, since it is
used for evaluating the test programs and test data in the
process of searching best solutions. The second role of
the fault simulator is to evaluate the decisions for insert-
ing test points to improve the testability. We updated our
fault simulator, developed in [32], to cover the needs of
the described BIST synthesis framework. The experi-
mental results of using the simulator are presented in
Section 7.4.

For generating test operands, the methods of random
search or genetic algorithms can be used. In this paper,
we have used a genetic test operand generator based
on using the Java Genetic Algorithms Package
(JGAP) [33].

5. IMPROVEMENT OF THE TESTABILITY

The blocks in the subsystems may contain RPR faults,
which are difficult to detect with selected self-test sub-
routines, and the generated test data. We call these

blocks as difficult testable ones. To improve the test-
ability of the subsystem we have two possibilities: to
improve either observability or controllability. For this
purpose proper test points should be inserted. Examples
of improving the testability in a given subsystem are
shown in Fig. 4.

Assume that there are a not well observable Block 1,
and a not well controllable Block 2 in the subsystem. SA
is for collecting the response signals from the subsystem
under test. A dedicated test signal T is used for
switching the system into the test mode, e.g., to
reconfigure selected registers or flip-flops into signature
analyser, and to allow specific test related control over
the subsystem.

Insertion of a test point OP allows making the
Block 1 directly observable in SA, whereas the test point
CP is inserted for dedicated control over a selected input
of the Block 2. In the normal work, test signal T is low
to select the upper channel of the multiplexer for direct
connecting the Block 1 with Block 2, whereas in the test
mode, signal T will switch the input of Block 2 to the
lower channel of MUX for sending the control signal CP
to Block 2. The control signal can be generated in
different ways from other parts of the subsystem, e.g.,
from the Block 1.

To minimize the cost of hardware needed for
improving the testability of CUT, the number of test
points to be inserted either for observation or control
should be minimized. The minimum set of test points
should be selected on the basis of not detected faults.

To each node of CUT a weight can be assigned,
measured by the amount of information it provides
about not detected faults. The nodes with highest
weights can be selected as test points.

The amount of information in general case can be
measured as entropy:

2 2log (1) log (1),I p p p p= − − − − (1)

where p is the probability that a message is chosen
from all possible choices in the message space. In our
case, the message space consists of two messages: either
at the given test point a not detected fault can be
detected or no faults can be detected at this test point.

Assume, that the Blocks 1 and 2 in Fig. 4 are the
only blocks in the subsystem. Assume also that the

Block 1 Block 2MUX

CP

OP

T

SA

Fig. 4. Insertion of test points into a subsystem.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

156

Block 1 contains 1,n and the Block 2 contains 2n
undetected faults. Then, for calculating I for the output
of Block 1 we have in the formula (1):

1

1 2

.
n

p
n n

=
+

 (2)

Example 1. Consider a subsystem in Fig. 5 consisting
of 4 blocks 1, 2, 3, and 4, which contain 4, 12, 28, and
20 undetected faults, respectively. For the outputs of the
blocks we will have the probabilities:

1 2 3 44 64 0.0625, 16 64 0.25, 0.5, 1,p p p p= = = = = =

and the corresponding amounts of information

1 2 2

2 3 4

0.0625log 0.0625 0.9375log 0.9375 0.325,

0.8, 1, and 0.

I

I I I

= − − =

= = =

This result suggests to select as the first test point the
output of the Block 3 with 3 1,I = since on the output of
it, if made directly observable, exactly half of the
undetected faults can be detected.

The design for testability may consist of several

steps. After each step of the improvement either of the
observability or of the controllability, the amounts of
information for the nodes of the circuit should be
recalculated to find the next best place for inserting a
test point.

Consider in Fig. 6 a subsystem, which contains
undetectable faults in all three blocks. Assume that all
the faults in Block 1 can be detected if the block is made
directly observable. On the other hand, assume that the
Blocks 1 and 2 will still both contain undetectable faults

Fig. 5. Subsystem of 4 blocks with undetected faults.

Fig. 6. Subsystem of 3 blocks with untested faults.

if the Block 2 was made directly observable. In this
case, we have to improve the controllability of the
Block 2. If now all the faults in Blocks 1 and 2 will be
detectable on the output of Block 2, the problem with
Blocks 1 and 2 is solved. However, if the faults in
Block 1 remain still not detected through Block 2, we
have to make the output of Block 1 directly observable
or improve its input controllability.

Now we have to test again the full system. If Block 3
will still contain undetectable faults, we have to improve
its controllability. If after that the Block 2 will still have
undetected faults, it must be done directly observable.

To summarize, after finding a test point TP with the
highest amount of information about the undetected
faults in CUT, we have, first, to solve the testability
problem in the part of CUT, which feeds the test point
TP, as explained above on the basis of Fig. 6.
Thereafter, we have to recalculate the probabilities and
information quantities for the remaining part of CUT,
find the best place for the next test point and repeat the
procedure.

6. EXPERIMENTAL TESTABILITY ANALYSIS
SET-UP

Exploration of testability improvement solutions is a
very costly procedure, since it needs a lot of design
modifications and evaluation of each modification by
measuring its testability with fault simulation which
itself is a time consuming procedure. We developed an
experimental set-up for testability analysis which con-
siderably speeds up the exploration procedure.

The set-up consists of two tables: simulation table
(ST) and fault table (FT). They will be created for the
given circuit by fault simulating the given test pattern
set. This set-up will be the basis for design explorations
in search for the optimum testability. Instead of direct
circuit modifications, we simulate the circuit indirectly
by modifying only ST, and instead of the fault simula-
tion of the whole new modified circuit, we simulate only
this part of the circuit, which is influenced by the
injected circuit change.

Example 2. Consider the circuit in Fig. 7 which repre-
sents the smallest member of the ISCAS’85 benchmark
suite [34]. The test, applied to the inputs of the circuit,
consists of a set of 5 test patterns. The results of
simulation and fault simulation are depicted in Tables 1
and 2, respectively. The columns in both tables cor-
respond to the 15 nodes jw in the circuit (including
5 inputs and 2 outputs), and the rows i correspond to
the 5 test patterns .iT

The entries (,)c i j in Table 2 mean the following:
(,) 0,c i j = if the test pattern iT detects the stuck-at fault

0;jw ≡ (,) 1,c i j = if the test pattern iT detects the

R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 157

0

1

3
4

5

7

6
9

8

2 10

11
12 13

1401010

00011
11100

00010

11010

Fig. 7. ISCAS circuit c17.

Table 1. Simulation table ST

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 0 1 1 0 1 1 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 1 0 0 1 1 1
1 1 0 0 1 1 0 0 1 1 1 1 1 0 0
0 0 1 1 0 1 1 1 1 0 1 0 0 1 1
0 0 0 0 0 1 1 0 1 0 1 1 0 1 1

Table 2. Fault table FT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 X X 1 1 X X 1 0 0 0 0 1 X 0 1
2 0 0 0 1 X X X 0 0 X 1 1 X 0 0

3 X X 1 X X X 1 1 X 0 0 0 0 1 1
4 1 X X X 1 0 0 X X 1 X X X 0 0

5 X X X X X 0 0 X X 1 X X 1 0 0
& 0 & 1 1 0 & & 0 & & & & & &

stuck-at fault 1;jw ≡ (,) X,c i j = if the test pattern iT
does not detect any fault at the node .jw The last row
with entries js in the fault table summarizes information
in the columns in the following way: () 0,s j = if there
is at least one entry (,) 0c i j = in the column ,j and no
entry (,) 1;c i j = () 1,s j = if there is at least one entry

(,) 1c i j = in the column ,j and no entry (,) 0;c i j =
() &,s j = if there is at least one entry (,) 0c i j = and at

least one entry (,) 1,c i j = and finally, () X,s j = if all
entries in the column are (,) X.c i j =

Assume, these 5 test patterns form the whole test set
applied to the circuit during a test program activated in
the system. From FT we see that 5 faults 1 1,w ≡

3 0,w ≡ 4 0,w ≡ 5 1,w ≡ and 8 1w ≡ are not detected by
the given test, which gives the fault coverage only
83.3% (25 stuck-at faults from 30 are detected).

To improve the quality of the given test, we may
improve the testability of the circuit by inserting test
points in a similar way as we did at the higher level in
Section 5.

It is easy to see that in this example it is not possible
to test the faults 3 0,w ≡ 4 0,w ≡ 5 1,w ≡ and 8 1w ≡ by

adding test points for observing the values on the
outputs of faulty gates, because the faults at the inputs of
the gates cannot propagate through the gates by the
given test patterns. For example, the nodes 5 and 8 have
during all the test patterns continuously the value 1 (see
the columns 5 and 8 in Table 1), which means that the
faults 5 1w ≡ and 8 1w ≡ are never activated (to activate
a fault 1jw ≡ we need to apply on the node the opposite
value 0).jw = The conclusion of the described case is:
we have to improve the controllability of the related
gates.

To minimize the number of test points needed we
have to start to exercise with multiplexers at the nodes
closest to the inputs, taking into account the fact that
after making a node jw controllable, the subsequent
nodes, having a path from ,jw may get controllable as
well. This is the case with the given circuit. After
making the node 3w controllable, the nodes 4 ,w 5 ,w
and 8w will be controllable as well, and all the faults at
the nodes 3 ,w 4 ,w 5 ,w and 8w will be detected. The
only not detectable fault is now 1 1.w ≡ This fault can be
detected by making the output of the gate, i.e. the node
10 observable. After inserting the two test points, the
fault coverage of the given test set will be 100%.

Experimental results of DFT for more complex
circuits are presented in the next section.

7. EXPERIMENTAL CASE STUDIES

We have carried out experiments with synthesis of
functional BIST for two data-paths: (1) restoring 16-bit
integer divider, and (2) non-restoring 16-bit signed
integer divider. The goal of the experiments was to
design a FBIST by improving the testability of a system
with as few added test points as possible. The experi-
ments were carried out for two approaches: random and
genetic generation of test operands.

7.1. Experiments with restoring integer divider

The data path of the system consists of 3 registers, cycle
counter and 16-bit ALU as the CUT. ALU has 53 inputs
and 17 outputs. To improve the testability, 4 test points
were inserted which were connected via XOR gate to a
single additional output. Test operands were found by
random search. The shortest test with 100% fault
coverage, which was found, consists of 3 operands
which produce 197 direct input patterns to ALU.

Table 3 illustrates the test coverage as the function of
the number of test operands used by the instruction. For
each number of operands, 1000 random experiments
were carried out for finding the best combination of
operands, and the average, best and worse results are
shown. The same experiments are illustrated as well in
Fig. 8.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

158

Table 3. Fault coverages of test sequences

Fault coverage, % Number of
operands Average Best Worse

1 87.88 93.76 63.68
2 95.04 98.65 85.85
3 97.58 100 90.74
4 98.63 93.86
5 99.19 95.53
6 99.49 96.46
7 99.65 97.92
8 99.72 98.34
9 99.77 97.81
10 99.82 98.54

Fig. 8. Fault coverage as the function of test length.

Figure 9 demonstrates statistically how fast it would

be to generate for the circuit a test with 100% fault
coverage by pure random search. 1000 experiments
were carried out, and in each experiment random
operands were added to the test till the 100% fault
coverage was achieved. Frequency means how many
times from 1000 random experiments the 100% fault
coverage was achieved for the given number of
operands.

Fig. 9. Frequency ranges of random test lengths.

7.2. Experiments with non-restoring divider

In this experiment the operands were generated by
genetic test operand generator.

To have an understanding about the difficulty of
generating high quality test operands, an experiment was
carried out with 10 000 and 100 000 random samples,
and the fault coverage for each test operand was
measured. The 10 best results are included in Table 4. In
Table 5, the results of comparing the random and
genetic test operand generation approaches are depicted.

Whereas in Table 4 we were measuring the fault
coverage for independently generated random 1-operand
experiments then in Table 5 we were interested in
getting the best final fault coverage with as less as
possible number of operands. In the best experiment the
first operand chosen randomly happened to be with very
low fault coverage 76.17%, compared to the high fault
coverage numbers in Table 4. However, the subsequent
random sequence of the next 4 operands increased the
cumulative fault coverage up to the maximum value
99.77, achieved by the random approach.

In case of the genetic algorithm, the shortest 100%
test generated included 4 operands. However, by adding
a single additional test point to improve the testability of
the circuit, it was possible to reduce the number of
operands up to three, as in the case of the restoring
divider.

Table 4. Best fault covers for single operands

Fault coverage, % Best selected
operands 10 000 samples 100 000 samples

1 83.29 84.46
2 83.18 84.46
3 83.06 84.11
4 82.94 84.00
5 82.94 83.76
6 82.83 83.76
7 82.83 83.64
8 82.83 83.64
9 82.83 83.64
10 82.71 83.52

Table 5. Comparison of test synthesis methods

Genetic approach Number of
operands

Random
approach Without DFT With DFT

1 76.17 83.29 83.29
2 95.09 97.76 97.76
3 97.78 99.53 100
4 98.71 100
5 99.77

R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 159

Table 6. Parameters of genetic experiments

Experi-
ment No.

Evolu-
tions

Popula-
tion

Test
points

Coverage,
%

Time,
 s

 1 50 250 4 99.53 495
 2 100 250 4 99.53 1003
 3 50 500 2 99.76 1024
 4 50 1000 3 99.65 1876
 5 70 1000 1 99.88 2500

To minimize the number of test points, and to

demonstrate the possibility of trade-off between hard-
ware cost, test synthesis time and fault coverage, several
experiments with the genetic algorithm were carried out.
The columns 2–6 in Table 6 mean, the numbers of
evolutions, the population size, the numbers of test
points needed for adding into the circuit to achieve
100% fault coverage with 3-operand tests, the fault
coverage achieved by genetic algorithm without adding
test points, and the time in seconds used for test
synthesis by using the genetic algorithm, respectively.
The 5th experiment shows that we need only a single
added test point to achieve 100% fault coverage with 3-
operand test.

7.3. Impact of design for testability

In this section we present the results of experiments to
demonstrate the impact of improving the testability on
the fault coverage and on the diagnosability of circuits.

In Table 7, it is shown how the fault coverage can be
improved for the given test pattern set by inserting test
points. Circuits from the following benchmark families
were exercised: ISCAS’85 [34], ISCAS’89 [35], and
ITC’99 [36] are listed in column 1.

Table 7. Improvement of fault coverage by DFT

Circuit characteristics Improvement of fault
coverage with DFT

Circuit Input Out-
put

Nodes TP FC,
% before

FC,
% after

c1908 33 25 866 5 99.48 99.88
c2670 233 140 1 313 65 88.65 98.67
c3540 50 22 1 648 59 95.54 100
c5315 178 123 2 712 16 98.89 100
c7552 207 108 3 552 51 94.09 98.27
s9234 247 250 3 637 135 92.19 98.6
s1320 700 790 5 228 72 98.19 99.97
s15850 611 684 6 075 182 94.20 98.93
s35932 1 763 2 048 19 547 17 88.5 99.99
bo5 35 70 1 332 153 77.52 97.37
b12 126 127 1 535 3 99.77 100
b14 277 299 11 858 93 92.76 99.41
b15 485 519 11 749 152 88.78 99.84

The main characteristics of circuits as the numbers of
inputs, outputs, and nodes of the circuits are given in the
columns 2, 3, and 4, respectively. The number of
inserted test points TP is given in column 5 and the
comparison of fault coverage FC before and after insert-
ing test points are depicted in columns 6 and 7. The
high number of needed test points is explained by the
width of the circuit (number of inputs). The high number
of inputs leads to the high number of faults, which can
be made testable only by independent individual test
points.

The goal of these experiments was not to achieve
100% fault coverage, rather to investigate the
dependence of the increase in fault coverage on the
number of test points. To generate a 100% test needs a
time costly deterministic test pattern generation. To be
able to carry out multiple steps of evaluation of the DFT
results in the step-by-step test point insertion, we used a
fast random test pattern generation. This was sufficient
to demonstrate the efficiency of chosen test points in
terms of improved fault coverage.

In Table 8 and Fig. 10, it is shown how the diagnos-
ability of CUT can be improved by inserting test points.
Diagnosability is measured as the average diagnostic
resolution (the number of suspected indistinguishable
faults in case a CUT has failed).

Table 8. Improvement of diagnosability by DFT

TP c2670 c5315 c6288 c1908 c1355 c3540 AVRG

0 18.4 17.3 68.0 51.0 111.3 12.9 46.5
5 15.3 11.0 51.4 37.2 71.2 11.1 32.9
10 13.9 7.9 41.8 24.9 43.1 9.2 23.5
15 13.2 7.3 37.3 20.5 34.6 7.5 20.1
20 10.2 7.1 30.0 16.4 30.0 7.1 16.8

Fig. 10. Improvement of diagnosability by DFT.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

160

7.4. Experimental data of the fault simulator

To carry out the experimental work of fault coverage
analysis and evaluation of the efficiency of test points
insertion, we updated our fault simulator [32].

Table 9 presents the characteristics of the fault
simulator which was accommodated for the needs of
FBIST synthesis framework. The experiments were
carried out for the benchmark circuits of ISCAS’85 [34],
and the full-scan versions of ISCAS’89 [35] and
ITC’99 [36] (column 1) to be compared with two state-
of-the-art commercial fault simulators C1 and C2 from
major CAD vendors (columns 3, 4), and the developed
new simulator (column 5). Fault simulation times in
seconds were calculated for the sets of random 10 000
patterns. The experiments were run on a 1.5 GHz
UltraSPARC IV+ workstation using SunOS 5.10 operat-
ing system.

8. CONCLUSIONS

We introduced a new approach to design self-testing
processor architectures, which uses the inherent func-
tionality of the given system for on-line test pattern
generation. The approach does not need to store high
volume test data in the processor memory. Instructions
of the processor are used for launching the hardware
components oriented test procedures whereas the test
patterns applied to the selected CUT are generated on-
line and observed by MISR. In general case, the best
places for MISR are selected by profiling the test
processes to determine the most frequently visited nodes
in the tested subsystem, to get the maximum information
when observing the test run.

Table 9. Speed characteristics of fault simulator

Simulation time, s Circuit No. of
gates C1 C2 New

c2670 883 2.2 24 0.4
c3540 1 270 7.4 43 0.9
c5315 2 079 5.6 57 0.8
c6288 2 384 27.8 284 7.4
c7552 2 632 8.1 88 1.2
s13207 3 214 5.6 70 2.0
s15850 3 873 12.1 111 2.7
s35932 12 204 23.6 390 5.7
s38417 9 849 31.4 310 7.0
s38584 13 503 23.2 320 6.4
b14 9 150 49.2 N/A 14.5
b15 8 877 39.1 N/A 26.6
b17 31 008 117.7 N/A 77.8
Average normalized

run-time
4.7 43 1

The proposed FBIST combines clock cycle based
response collection, as used in the hardwired ABIST,
with software based flexibility to extend the restricted
application area of ABIST from specific data-path
architectures to a larger class of processor architectures.
The clock cycle based test response observation by
MISR allows to avoid fault masking compared to
traditional SBST. The dedicated test data (e.g. instruc-
tion operands) generation coupled with CUT-oriented
fault coverage analysis allows to achieve high fault
coverage.

Another novelty is to combine test program genera-
tion with testability improvement of the CUT by insert-
ing test points. This combination of test data generation
with DFT improvement allows to explore different
trade-offs between testing cost and quality.

For generating test data (operands) used by test
instructions, a genetic algorithm was developed to
achieve the needed high fault coverage. For example, in
the case of having ALU for the division operation as a
CUT, we needed only three division operations with a
single inserted test point to achieve 100% stuck-at fault
coverage of the responsible for this operation hardware.

We have created a framework for synthesis of self-
testing processor architectures, supported by design for
testability advisor and a very efficient fault simulator to
carry out fast exploration of possible FBIST solutions.

ACKNOWLEDGEMENTS

This work was jointly supported by EU through
European Regional Development Fund, and FP7-2013-
ICT-11: 619871 project BASTION as well as by the
institutional research funding IUT 19-1 of the Estonian
Ministry of Education and Research, and ESF grants
8478 and 9429.

REFERENCES

 1. Bernardi, P., Grosso, M., Sanchez, E., and Sonza
Reorda, M. Software-based self-test of embedded
microprocessors. In Design and Test Technology for
Dependable Systems-on-Chip (Ubar, R., Raik, J., and
Vierhaus, T., eds). Information Science Reference, Igi
Global, Herschey, New York, 2011, 338–359.

 2. Mak, T. M., Krstic, A., Cheng, K.-T., and Wang, Li.-C.
New challenges in delay testing of nanometer, multi-
gigahertz designs. IEEE Des. Test Comput., 2004, 21,
241–248.

 3. Bushard, L., Chelstrom, N., Ferguson, S., and Keller, B.
DFT of the cell processor and its impact on EDA test
software. In Proc. IEEE Asian Test Symposium.
Fukuoka, 2006, 369–374.

 4. Wang, S. and Gupta, S. K. ATPG for heat dissipation
minimization during scan testing. In Proc. ACM IEEE

R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 161

Design Automation Conference. Anaheim, 1997, 614–
619.

 5. Chen, L., Ravi, S., Raghunathan, A., and Dey, S. A scal-
able software-based self-test methodology for pro-
grammable processors. In Proc. IEEE/ACM Design
Automation Conference. Anaheim, 2003, 548–553.

 6. Wang, L.-T., Wu, C.-W., and Wen, X. VLSI Test
Principles and Architectures. Morgan Kaufmann, San
Francisco, 2006.

 7. Gizopoulos, D. Advances in Electronic Testing:
Challenges and Methodologies. Springer, 2006.

 8. Hetherington, G., Fryars, T., Tamarapalli, N., Kassab, M.,
Hassan, A., and Rajski, J. Logic BIST for large
industrial designs. In Proc. IEEE International Test
Conference. Atlantic City, 1999, 358–367.

 9. Hortensius, P. D., McLeod, R. D., and Podaima, B. W.
Cellular automata circuits for BIST. IBM J. Res. Dev.,
1990, 34, 389–405.

10. Eichelberger, E. B. and Lindbloom, E. Random pattern
coverage enhancement and diagnosis for LSSD logic
self-test. IBM J. Res. Dev., 1983, 27, 265–272.

11. Tamarapalli, N. and Rajski, J. Constructive multi-phase
test point insertion for scan-based BIST. In Proc. IEEE
International Test Conference. Washington, DC, 1996,
649–658.

12. Touba, N. A. and McCluskey, E. J. Test point insertion
based on path tracing. In Proc. 14th IEEE VLSI Test
Symposium. Princeton, 1996, 2–8.

13. Yang, J.-S., Nadeau-Dostie, B., and Touba, N. Reducing
test point area for BIST through greater use of
functional flip-flops to drive control points. In Proc.
International Symposium on Defect and Fault
Tolerance in VLSI Systems. Chicago, 2009, 20–28.

14. Koenemann, B. LFSR-coded test patterns for scan designs.
In Proc. European Test Conference. Munich, 1991,
237–242.

15. Zhao, Z., Pouya, B., and Touba, N. A. BETSY: synthesiz-
ing circuits for a specified BIST environment. In Proc.
IEEE International Test Conference. Washington,
1998, 144–153.

16. Agrawal, V. K. and Cerny, E. Store and generate built-in
test approach. In Proc. Fault-Tolerant Computing
Symposium. Portland, Maine, 1981, 35–40.

17. Wunderlich, H.-J. and Kiefer, G. Bit flipping BIST. In
Proc. IEEE ACM International Conference on Com-
puter-Aided Design. San Jose, CA, 1996, 337–343.

18. Touba, N. A. and McCluskey, E. J. Bit-fixing in pseudo-
random sequences for scan BIST. IEEE Trans. CAD
Integr. Circ. Syst., 2001, 20, 545–555.

19. Hellebrand, S., Tarnick, S., Rajski, J., and Courtois, B.
Generation of vector patterns through reseeding of
multiple-polynomial linear feedback shift registers. In
Proc. IEEE International Test Conference. Baltimore,
MD, 1992, 120–129.

20. Touba, N. A. and McCluskey, E. J. Transformed pseudo-
random patterns for BIST. In Proc. VLSI Test
Symposium. Princeton, NJ, 1995, 410–416.

21. Dorsch, R. and Wunderlich, H.-J. Accumulator based
deterministic BIST. In Proc. IEEE International Test
Conference. Washington, DC, 1998, 412–421.

22. Rajski, J. and Tyszer, J. Arithmetic BIST in Embedded
Systems. Prentice-Hall, NJ, 1998, 268.

23. Hellebrand, S., Wunderlich, H.-J., and Hertwig, A. Mixed-
mode BIST using embedded processors. J. Electron.
Test. (JETTA), 1998, 12, 127–138.

24. Voyiatzis, I., Gizopoulos, D., and Paschalis, A. Accumulator-
based test generation for robust sequential fault testing in
DSP cores in near-optimal time. IEEE Trans. VLSI Syst.,
2005, 13, 1079–1086.

25. Knuth, D. E. The Art of Computer Programming. Vol. 2.
Addison-Wesley, Reading, Massachusetts, 1981.

26. Rajski, J. and Tyszer, J. Accumulator-based compaction of
test responses. IEEE Trans. Comput., 1993, 42, 643–
650.

27. Gizopoulos, D., Psarakis, M., Hatzimihail, M., and
Maniatakos, M. Systematic software-based self-test for
pipelined processors. IEEE Trans. VLSI Syst., 2008,
16, 1441–1453.

28. Chen, L. and Dey, S. DEFUSE: A deterministic functional
self-test methodology for processors. In Proc. VLSI
Test Symposium. Montreal, 2000, 255–262.

29. Jayaraman, K., Vedula, V. M., and Abraham, J. A. Native
mode functional self-test generation for systems-on-
chip. In Proc. International Symposium on Quality
Electronic Design. San Jose, CA, 2002, 280–285.

30. Apostolakis, A., Psarakis, M., Gizopoulos, D., and
Paschalis, A. A functional self-test approach for
peripheral cores in processor-based SoCs. In Proc.
International On-Line Testing Symposium. Crete,
2007, 271–276.

31. Koal, T., Kothe, R., and Vierhaus, H. T. SoC self test
based on a test-processor. In Design and Test Techno-
logy for Dependable Systems-on-Chip (Ubar, R.,
Raik, J., and Vierhaus, T., eds). IGI Global, Herschey,
New York, 2011, 360–376.

32. Ubar, R., Devadze, S., Raik, J., and Jutman, A. Parallel X-
fault simulation with critical path tracing technique. In
Proc. IEEE Conference on Design, Automation & Test
in Europe. Dresden, 2010, 879–884.

33. Java Genetic Algorithms Package. http://jgap.sourceforge.net
(accessed 18.02.2014).

34. Brglez, F. and Fujiwara, H. A neutral netlist of 10 com-
binational benchmark circuits and a target translator in
fortran. In Proc. IEEE International Symposium on
Circuits and Systems. Kyoto, 1985, 785–794.

35. Brglez, F., Bryan, D., and Kominski, K. Combinational
profiles of sequential benchmark circuits. In Proc.
International Symposium on Circuits and Systems.
Portland, OR, 1989, 1929–1934.

36. Corno, F., Reorda, M. S., and Squillero, G. RT-level
ITC’99 benchmarks and first ATPG results. IEEE Des.
Test Comput., 2000, 17, 44–53.

Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 151–162

162

Digitaalsüsteemide funktsionaalse isetestimise kvaliteedi analüüsi keskkond

Raimund Ubar, Sergei Kostin, Helena Kruus, Margit Aarna ja Sergei Devadze

Digitaalsüsteemide usaldatavusest on saanud üks tähtsamaid inseneriprobleeme. Süsteemide usaldatavuse suurenda-
mise perspektiivseks võimaluseks on projekteerida isetestivaid süsteeme, millega saab testimisseansse reaalajas ja
õigel töökiirusel läbi viia ning sellega tagada testimise kõrge kvaliteet. Artiklis on kirjeldatud uut isetestimise
metodoloogiat, mis põhineb süsteemi enda ressursside kasutamisel, millega välditakse vajadust viia süsteemi
täiendavaid spetsiaalseid testimisvahendeid, nagu see traditsiooniliselt toimub. Saavutatavateks eelisteks on
testimiseks vajalike lisavahendite minimeerimine ja nende negatiivse mõju välistamine süsteemi töökiirusele.
Reaalajas töökiirusel testimine võimaldab kasutusel olevate meetoditega võrreldes paremini avastada võimalikke
dünaamilisi rikkeid, näiteks suurenenud signaaliviiteid, mis kokkuvõttes tõstab testimise kvaliteeti ja tulemuste
usaldatavust. On välja töötatud meetodid testandmete ja -punktide minimeerimiseks. On kirjeldatud tarkvara-
keskkonda, milles sisalduvad tööriistad võimaldavad emuleerida projekteeritavat isetestivat süsteemi ja analüüsida
testimiskvaliteeti.

