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Abstract. In this study the influence of the digital resolution on the properties of a data sample is experimentally determined in 
mass measurements. A mass comparator with adjustable digital resolution interval, also known as the quantization step size, was 
used in well controlled repeatable conditions. The same measurement procedure with the resolution differing by up to a factor of 
200 was repeatedly carried out, and at least 150 mass differences were recorded with every resolution setting. A clear relationship 
was observed between the digital resolution and the type of random process characteristics for the data sample. Analysis shows 
that a white noise process dominates for data sets measured with the smallest digital resolution step from 0.001 mg and up to 
0.005 mg. For resolutions from 0.01 mg to 0.2 mg random walk noise is observed for which variance of the sample mean can 
increase proportionally with sample size. We demonstrate that instrumental resolution is a strictly limiting factor in mass 
measurements only for the data sets with significant positive correlations, such as those having random walk noise. Otherwise for 
the white noise process, the smallest possible variance is inversely proportional to averaging time, like in time-frequency 
metrology, and not limited by the instrumental resolution. Our measurement results show that in this case sample standard 
deviation of the mean (0.00003 mg) can be more than ten times smaller than that of a single result (0.0005 mg) or the Type B 
component of the digital resolution (0.00029 mg). 
 
Key words: finite resolution, minimum uncertainty, optimal signal quantization procedure. 
 
 
1. INTRODUCTION 

* 
Specially designed statistical methods are recommended 
for the uncertainty analysis of randomly varying 
repeated measurements that may be correlated [1]. Such 
special methods include Allan variance, autocorrelation 
function, power spectral density, etc., and are well 
developed in the time and frequency domain [2–4]. They 
are commonly used for electrical and radiation standard 
measurements [5–9], but in well established methods 
such as mass measurement [10,11] they are still rather 
rare. Nevertheless, in all metrology areas the influence 
of correlations on the uncertainty evaluation of repeated 
measurements can be important [1,2,5]. 

Random processes peculiar to the time series 
measured at uniform intervals can be of many different 
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types [2,3]. In the time and frequency field random 
processes are modelled by five integer power law 
spectrums ( ) ~ ,yS f f α  where the appropriate exponent 
α  varies from − 2 to + 2 depending on the instrument 
used and the region of Fourier frequency f  or the 
averaging time τ  under consideration. For electrical 
quantities two spectrums are considered [5], with 

1α = −  and 0.α =  However, in some other fields 
usually only a white noise process with 0α =  (uncor-
related measured quantity values) is assumed [2,5]. 
Although at first glance the measurement sequences may 
imply different types of random process, it is impossible 
to clearly distinguish a white noise process from a 1 f  
noise process purely by looking at a plot of a time series 
or at its histogram [5]. These distinctions are important, 
as the uncertainty associated with these processes will 
be much different: the variance of the sample mean of a 
white noise process is inversely proportional to the 
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number of values in the sample, whereas for a 1 f  
noise process the variance of the sample mean is 
independent of sample size. 

Digital data processing is widely used in modern 
measurements with rather different sampling frequencies 
and digital resolutions applied. It is well known that 
quantization of the analogue signal is a highly nonlinear 
process, but for the probability densities of the initial 
and quantized signals the process can be linear [12]. 
Therefore quantizing conditions are focused on the 
probability density functions (PDF) of data samples 
rather than on the particular values. These conditions are 
formulated in quantizing theorems (QT). According to 
QT I [12], the PDF of initial signal x  can be derived 
from the PDF of the output digital signal x′  if the 
quantization step size q  is suitably small in comparison 
with the breadth of the PDF. According to QT II, the 
moments of x  can be calculated from the moments of 
x′  if q  is respectively small. For QT II the size of q  
can be up to twice as large as needed for QT I. So, 
among digitally measured time series there are quite 
obviously those fulfilling the requirements of QT I 
and/or QT II, but also those measured with larger q  and 
not fulfilling either QT. The situation can be even more 
complicated when the PDF of an initial signal is a 
combination of different processes. For example, a white 
noise can be present together with some low frequency 
noise, which may substantially burr the limits for the 
validity of QTs. Thus, specifying the dominant noise of 
the sample may be helpful for the further data analysis. 

Different methods including conventional frequentist 
[1,13–16], Bayesian [17–20], and fiducial inference 
[21,22] have been developed for the estimation of the 
measurand and the uncertainty of repeated measure-
ments affected by finite resolution. For the theoretical 
modelling of the problem Monte Carlo simulation  
[23–27] has been used. Two significant factors con-
tributing to the measurement outcome and uncertainty 
are always assumed in [13–26] to be present: finite 
resolution and Gaussian noise. In the majority of these 
publications, it is generally concluded that if the sample 
standard deviation s  is sufficiently large in comparison 
to the resolution or quantization step size q  of the 
measurement instrument (about 0.5 ),s q≥  the effect of 
the finite resolution will be insignificant, and con-
ventional statistical inference will be valid. Therefore 
these publications focus on measurement series with 
relatively small variance ( 0.5 )s q≤  without considering 
the dominant random process present. However, 
identification of the dominant noise type of the data 
series, especially for samples with relatively small 
variance where the requirements of QT I and QT II may 
be not met [12], should be of primary importance for 
uncertainty evaluation. 

Some methods presently used for the identification 
of particular random-noise processes are given in 

[2,5,28–31]. All these methods are firmly applicable 
only if a sufficiently large data set with over a hundred 
values is available, which was not the case for many of 
publications ([15–19,21,22]) treating finite resolution. 
As a kind of criterion of the applicability of con-
ventional statistics, sometimes ([24,32]) the ratio of the 
standard deviation s  to the resolution q  is used, but its 
use is not sufficiently justified. 

In our experimental study the influence of the digital 
resolution on the statistical properties of the data sample 
is experimentally determined. The same mass difference 
was extensively measured under repeatable conditions. 
Different resolution settings of the automatic mass 
comparator from 0.001 mg up to 0.200 mg were applied, 
and at least 150 mass differences with every resolution 
setting were recorded. The digital resolution interval q  
was the single parameter intentionally changed during 
the experiment process. From 600 up to 1600 readings at 
uniform time intervals with every resolution setting were 
obtained; this is a large data set of 150 to 400 mass 
differences sufficient for our statistical analysis. Data 
sets with different statistical properties were recorded 
and, as recommended in [1,2,5], special methods of 
accounting for possible correlations were used for the 
statistical analysis. Our paper is focused on the effects 
that cannot be observed in routine practice when only 
relatively small data samples are available. Neverthe-
less, knowing possible threats due to digitization is 
helpful also for routine practice. 

 
 

2. STATISTICAL  TOOLS  FOR  AUTO-
CORRELATED  MEASUREMENTS 
 

One of the central tasks in time–frequency metrology is 
frequency stability analysis in the time domain based on 
an array of data points iy  with constant time intervals 
between successive measurements. The statistical noise 
characteristics of a frequency source are usually 
analysed only after eliminating factors like drift and 
environmental effects. Data sampling or measurement is 
carried out during time interval 0,τ  the analysis or 
averaging during time ,τ  which is usually a multiple  
of 0.τ  

 

0 ,mτ τ=                                  (1) 
 

where m  is the averaging factor. 
More than ten different statistical variances have 

been used for frequency stability analysis in time–
frequency metrology [3,4]. Amongst the others, the most 
widely used are Allan variance and its later overlapping 
version which, for the same data set, can provide an 
extension to longer averaging times and better con-
fidence than the original version. 
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Table 1. Frequency and time domain exponents for some 
statistical power-law noises 

 

Type of noise Exponent α Exponent µ 

White (WFM) 0 − 1 
Flicker (FFM) − 1 0 
Random walk (RWFM) − 2 1 

 
 
The stability of a frequency source in the time 

domain is usually shown by using the so-called 
logarithmic σ τ−  plot that presents some variance 2σ  
(or standard deviation )σ  of data iy  as a function of the 
time τ  over which the points iy  are averaged. At the 
same time, the σ τ−  plot shows the stability of the 
signal and the type of statistical noise. The slope of the 
curve, ,µ  is characteristic for a particular power law 
noise. The most relevant types of noise related to the 
frequency and time domain exponents α  and µ  are 
given in Table 1. In the frequency domain, white noise 
is a random signal with a constant power spectral 
density ( )yS f  not depending on frequency, thus 0α =  
means that 0( ) ~ .yS f f  In the time domain, the well-
known law for white noise is valid, stating that the 
variance of the mean is adversely proportional to the 
number of averaged values :N  2 ( )yσ τ ~ 1,N −  where 
respective exponent 1.µ = −  For the data set with 
frequency modulation (FM) the relation between α  and 
µ  is: 

 

1.α µ= − −                                 (2) 
 

An important application of the σ τ−  plot is the 
determining of the flicker floor of the frequency signal 
or standard [3,33]. This is a point where a white FM 
noise with 1µ = −  will turn to a flicker FM noise with 

0.µ =  This point defines the principal stability and/or 
uncertainty limit achievable with this particular signal 
source. Determination of this point requires a lengthy 
measurement series, which may take several months, 
and also depends on the analytical method (type of 
variance) used for analysis. Continued averaging after 
the flicker floor is achieved will not further improve 
stability or uncertainty estimates of the signal. 

 
2.1. Variances  suitable  for  correlated  data 

 
The estimated variance for N  independent random 
variables y following [1] is calculated as: 

 

2 2

1

1 ( ) ,
1

N

i
i

s y y
N =

= −
− ∑                     (3) 

 

where iy  are the N  values of the data set and y  is their 
arithmetic average. 

In the case of auto-correlated and therefore non-
independent random data, 2s  is not applicable because 

it is non-convergent but (3) shows that s  depends on 
.N  This problem of adequate estimation will arise if the 

average value of measurements is not stationary. 
However, with the Allan variance this sample-dependent 
unstable behaviour is normally avoided. The Allan 
variance AVAR (called also the 2-sample variance) is 
calculated from the data set iy  as follows [2]: 
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where iy  is the thi  of M  values averaged over the 
sampling interval, .τ  

Stability is often expressed as the square root of 
variance, ( ),yσ τ  the Allan deviation, ADEV. For white 
FM noise the Allan variance is the same as the variance 

2.s  For more divergent noise types such as flicker noise, 
the Allan variance, as distinct from 2 ,s  converges to a 
value that is independent of the size of averaged 
samples. 

At present, the most common choice in time–
frequency metrology is the overlapping Allan variance 
defined as [3,4]: 

 
212 1

2
2

1

1( ) ( ) ,
2 ( 2 1)

j mM m

y i m i
j i j

y y
m M m

σ τ
+ −− +

+
= =

 
= − − +  

∑ ∑  (5) 

 

where according to (1) m  is the averaging factor, τ  the 
averaging time, and M  is the full sample size. In 
comparison with the original Allan variance, the over-
lapping version has much better reproducibility and 
allows for larger averaging times τ  to be used for the 
same data set of M  observations. The original and 
overlapping versions of the Allan variance will give 
exactly the same result for the smallest time 0τ  during 
which a single value is measured, and for longer 
averaging times the expectations of both versions are the 
same. The overlapping Allan variance (or estimated 
sample variance) and respectively Allan or standard 
deviations are mostly used in our study. As an analogue 
of the quantity “frequency” commonly analysed in time–
frequency metrology our study has the quantity “mass 
difference”, see formula (12). 

 
2.2. Power  law  noise  identification 

 
Knowing the power law noise type can considerably 
improve the planning of measurements; for example, 
deciding on the optimal averaging time, determining the 
uncertainty intervals, the equivalent number of degrees 
of freedom, and correcting for different biases. In the 
practice of time and frequency metrology, three methods 
have been used for power law noise identification: 
1. Barnes 1B  bias function [2,3,34], which is the ratio 

of 2s  to the Allan variance; 
2. Slope on the logarithmic 2σ τ−  plot [2,3]; 
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3. Use of the lag 1 autocorrelation coefficient [3,28] 
including differencing and recalculation of auto-
correlation for the noises with more divergent data. 
The Barnes 1B  bias function shows the non-con-

vergence of standard variance, and is defined as: 
 

2

1 2

( ) .
( )y

sB τ
σ τ

=                               (6) 

 

Here 2 ( )s τ  is the estimated sample variance for points 
with averaging time τ  and 2 ( )yσ τ  is the Allan variance 
for averaging time .τ  An approximate relation of 1B  
with lag 1 autocorrelation coefficient 1r  for the same 
data set is: 

 

1
1

1 .
1

B
r

≅
−

                             (7) 

 

For similar purposes, the Durbin–Watson statistic d  is 
used [29–31] instead of the 1B  bias function in many 
other fields of statistics. Formula (8) gives the Durbin–
Watson statistic d  and its relation with 1:B  
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where the vector z  of the residuals from the regression 
1 2{ , , , }nz z z z= K  of the time series iy  is defined by 

;i i iz y y= − )  here iy)  is a least squares estimate for the 
value .iy  

Method 2 for the identification of power law noise is 
based on the slope of the line fitted through the 
logarithmic plot of the Allan variance and averaging 
time. For this method, obviously at least two different 
averaging times are needed, and estimation is valid for 
all points used. For practical purposes a single point 
estimate of method 1 or 3 is preferable. 

Method 3 makes use of the lag 1 auto-correlation 
coefficient calculated from: 
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where iy  are the successive results of the recorded data 
set. 

According to the algorithm of Method 3, the expo-
nent α  can be calculated from the expression: 

 

2( ),dα δ= − +                        (10) 
 

where d  is the order of the differencing of data iy  
( 0;1; 2),d =  and δ  is defined as: 

1

1

.
1

r
r

δ =
+

                              (11) 

 

If 0.25,δ <  we assume the result of (10) to be valid 
and final. Otherwise, the lag 1 auto-correlation coef-
ficient is recalculated from the first differences 1i iy y+ −  
of the frequency data, and (10) is applied with 1.d =  
Method 3 can give reliable results for samples starting 
with 64,N ≥  where for 0α =  the expanded uncertainty 
covering 94% is approximately from − 0.4 to + 0.7. For 
samples with 128 points the expanded uncertainty 
covering 99% will be from − 0.3 to + 0.5 [28]. 

 
 

3. MEASUREMENT  PROCEDURE  AND  DATA  
SETS  USED  FOR  ANALYSIS 
 

In our study, the RTTR type measurement cycle is used 
for the high accuracy mass comparisons with an 
automatic digital Mettler AT106H comparator operated 
in an air conditioned room [35]. The comparison cycle 
starts off with loading the reference weight ,R  and after 
stabilization time the first indication 1I  is recorded. 
Then test weight T  is loaded and the second indication 

2I  is recorded. After a short wait with an unloaded 
comparator the test weight T  is loaded again, and the 
third indication 3I  is recorded. Finally, after loading the 
reference weight ,R  indication 4I  is recorded. Weights 
are automatically placed on the load receiver and 
removed from it between each measurement. The time 
interval between the sequent indications is 2.1 min. The 
full variability range of indications caused by com-
parator zero drift over one day is normally within 
± 0.2 mg. A typical set of one-day indications and the 
mass differences calculated from the results is presented 
in Fig. 1. Air temperature [36], pressure, and relative 
humidity measured inside the comparator chamber 
concurrently with mass indications are also shown. The 
variability of air pressure seems to be the main cause for 
the zero drift of the comparator seen in Fig. 1. The 
influence of temperature variations can be noticed as 
well. 

In order to eliminate comparator zero drift from each 
of the four sequent readings, the mass difference 
between the weights T  and R  is calculated as 

 

1 2 3 4 .
2i

I I I I
I

− + + −
∆ =                     (12) 

 

Normally the full range of differences is within ± 3 least 
significant digital units around the mean; the time 
required for determining one difference is 8.4 min. Thus, 
during a one-day experiment usually 150 differences 
were determined, see Table 2. Because the compared 
weights were of the same density, air buoyancy cor-
rection was not relevant. 
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Fig. 1. One-day measurement sequence: readings (+) and mass differences (•). Solid lines show relative humidity (rh), air 
pressure, and temperature inside the comparator chamber. 

 
 

Table 2. List of the samples used for the statistical analysis. PDF – probability density function 
 

Resolution, 
mg 

Sample size Type of PDF & 
number of values 

Sample mean,
mg 

s, mg 2
0( ),yσ τ  

mg 

0.001 100 . . 5 0.014017 0.00043 0.00050 
0.001 100 . . 5 0.013953 0.00047 0.00050 
0.001 150 . . 9 0.014017 0.00065 0.00069 
0.001 120 . . 5 0.014074 0.00029 0.00031 
0.001 140 . . 7 0.014071 0.00049 0.00057 
0.001 150 . . 7 0.014125 0.00051 0.00057 
0.001 110 . . 4 0.014098 0.00029 0.00030 
0.001 120 . . 5 0.014073 0.00042 0.00043 
0.001 400 . . 7 0.014045 0.00051 0.00055 
0.001 160 . . 5 0.014051 0.00036 0.00040 
0.001 160 . . 5 0.014077 0.00031 0.00035 
0.001 150 . . 6 0.014077 0.00052 0.00055 
0.002 150 . . 5 0.014207 0.00080 0.00076 
0.005 150 . . 4 0.014083 0.0014 0.0014 
0.01 150  3 0.0141 0.0045 0.0036 
0.02 150  3 0.0116 0.0091 0.0061 
0.05 150  3 0.0082 0.018 0.0061 
0.1 150  3 0.0083 0.027 0.016 
0.2 150  3 0.0087 0.040 0.014 
0.5 150  1    
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It is interesting to note that random walk noise was 
dominant for the initial readings of the comparator 
shown in Fig. 1. According to [3], calculating the first 
difference of a data set makes it less divergent, and the 
absolute values of the power law exponents will change 
by 2. That is exactly the case for mass differences iI∆  
calculated from initial readings by using (12), and 
characterized by the white noise. Indeed, (12) is rather 
close to the usual differentiating operation. 

In the present study the mass differences of the same 
two 20 g weights were determined over a month (about 
20 one-day series with 100)N >  in repeatable condi-
tions [35]. A list of the samples used for the statistical 
analysis and some of their key parameters are given in 
Table 2. Time intervals between the successively 
measured samples lasted from some hours to some days. 
A sample with 400 differences was measured without 
any time gaps during more than two days. About half of 
the measurements were carried out using the highest 
digital resolution of comparator 0.001 mg;q =  for the 
rest (below the line in Table 2) a different resolution 
setting was used for each of the one-day series. 

According to [12], the probability density function 
(PDF) of quantized series x′  consists of a string of 
Dirac impulses located on a scale of q  and weighted by 
the samples of the PDF of ,x n+  where n  is “pseudo-
quantization noise” added to the initial signal .x  In 
column 3 of Table 2, for q  resolutions from 0.001 mg to 
0.005 mg digital distributions with bell-type envelope 
and with more than 4 different values are typical, and 
following [12] they likely fulfil at least the requirements 
of QT II. Starting from 0.01 mg,q ≥  the PDFs have 
only three different values with dominating side 
columns, which probably are less suitable for the evalua-
tion of the shape or moments of an initial signal. 

 
3.1. Statistical  properties  of  mass  differences 

 
Data over ten days that contained about 1860 measured 
differences and were obtained using the highest possible 
resolution (0.001 mg) of the comparator were analysed 
together. Figure 2 shows logarithmic plots of 2s  and the 
Allan variance of mass differences versus averaging 
factor m  according to (1). Here, factor 1m =  means that 
the variance is calculated from all successive values and 
corresponds to measurement time 0 ,τ  2m =  means that 
the groups of two successive values are averaged and the 
variance calculated from them corresponds to time 02 ,τ  
and 3m =  means that groups of three values with 
measurement time 03τ  are used, and so on. Both 
variances have a similar dependence on averaging but 
different uncertainties (shown at the level of 2).k =  The 
small uncertainty of the overlapping Allan variance 
calculated from (5) makes the curve in Fig. 2 suitable as 
a basis of reference for results measured with a larger 
digital  step.   The  estimated  sample  variance  2s   is  in  

 
 

Fig. 2. Determination of the lowest limit for uncertainty from 
the σ 

2– τ plot. The Allan variance is shown with squares, s 
2 

with open circles, and both together with the expanded 
uncertainty interval; k = 2. The white noise 1/n dependence of 
variance is shown as a straight line. 
 
 
good agreement with the Allan variance, but has much 
larger uncertainty, thus both imply that the white noise 
process is peculiar to the combined large data sample. 

The slope of this plot also specifies the random noise 
type as a function of m  or .τ  For all 11 data sets 
measured with the highest resolution of 0.001 mg, the 
dominant power law noise process for 0τ  was identified: 

0.45 0.23α = ±  and 1.45 0.23.µ = − ±  These values are 
valid for the first few points in the series. In Fig. 2 the 
slope for the central part of the curve is close to white 
noise ( 1.05),µ = −  and starting from an averaging factor 
of 64 the curve turns from white to flicker noise and has 
a significantly smaller slope. Nevertheless, the actual 
flicker floor is not reached and, for samples with 

100,N <  averaging still reduces the uncertainty. In 
Fig. 2 the Allan deviation for a single observation 

0( 8.5 min)yσ τ =  is 0.0005 mg, and ( 4300 min)yσ τ =  
equals 0.000027 mg, which is about ten times smaller 
than the assumed Type B contribution of the digital 
resolution 0.001 mg,q =  i.e. of 1 2( 12) 0.00029 mg.q ≅  
Data obtained with 0.001 mgq =  most likely fulfil the 
requirements for QT I and QT II [12]. 

The Allan variance of mass difference as a function 
of averaging factor m  as depending on the digital 
resolution of the comparator is presented in Fig. 3. The 
effect of digital resolution is evident. For resolutions 
from 0.001 mg to 0.005 mg the Allan variance of the 
mass differences measured decreases with averaging time, 
as expected for white noise with 1.µ ≈ −  For resolutions 
from 0.01 mg to 0.2 mg, slopes 0,µ ≥  and by using 
averaging uncertainty cannot be firmly improved, at least 
for the first ten points in a measurement series. 

Some of the 2σ τ−  curves given in Fig. 3 are 
modified  to  σ τ−  in   Fig. 4.  The  straight  lines  in  the  
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Fig. 3. Allan variance of measured mass differences as a 
function of averaging factor m and digital resolution q. 

 
 

 
 

Fig. 4. Allan deviation as a function of averaging factor m and 
digital resolution q. Straight lines represent only the 
uncertainty of the digital rounding effect due to the corres-
ponding q. 

 
 

figure show the contribution of the digital rounding 
effect due to corresponding digital resolution step q  in 
respect to the measured Allan deviation of the mass 
differences. For a resolution of 0.001 mg, the Allan 
deviation of a single result will be reduced more than ten 
times if a series of 64 points is averaged. At the same 
time, for a resolution of 0.1 mg the Allan deviation will 
be reduced only 3.4 times, and averaging up to the first 
16 points will not show any reduction. Therefore, a 
common Type B estimate of 0.029 mg for 0.1 mgq =  is 
quite adequate and this estimate cannot be reliably 
further improved by means of averaging. 

In Fig. 5 the experimental standard deviation and  
the  Allan  deviation  are  presented  as  functions  of  the  

 
 

Fig. 5. Standard deviation and the Allan deviation as a 
function of digital resolution q. Straight lines show the range 
from 0.3q to 0.5q of the respective resolution. 

 
 

digital resolution applied, including a number of values 
for 0.001 mg,q =  see also Table 2. As stated in 
[13,23,24,32], resolution q  will not affect the con-
ventional statistical inference if 0.5 ;s q≥  and 
conventional statistical inference cannot be applied if 

0.3s q≤  [32]. These limits are depicted as straight lines 
in Fig. 5. The major part of all experimental standard 
deviations determined over a month (see Table 2) fit in 
the range specified by those limits, and only two for the 
resolutions of 0.1 mgq =  and 0.2 mgq =  are smaller, 
implying that conventional statistical inference cannot 
be applied. At the same time, as confirmed by Figs 2 
and 3 and Table 3, data sets with dominating white noise 
suitable for conventional analysis are obtained only for 
the three first points with resolutions from 0.001q =  mg 
to 0.005 mg;q =  for data with resolutions from 0.01 mg 
to 0.2 mg apparently more advanced tools are required.  
 
 
Table 3. Determination of the power law noise exponent as a 
function of resolution 

 

Method 1: 
from B1 

Method 2: 
from slope 

Method 3: 
from AC 

Resolu-
tion, 
mg Expo-

nent
α 

Type 
of 

noise 

Expo
nent 
α 

Type 
of 

noise 

Expo-
nent 
α 

Type of 
noise 

0.001   0.3 WFM   0.2 WFM   0.4 WFM 
0.002 – 0.2 WFM   0.1 WFM – 0.2 WFM 
0.005 – 0.1 WFM – 0.0 WFM – 0.0 WFM 
0.01 – 0.5 FFM – 0.9 FFM – 1.6 RWFM 
0.02 – 0.8 FFM – 1.1 FFM – 1.8 RWFM 
0.05 – 1.4 FFM – 1.9 RWFM – 2.3 RWFM 
0.1 – 0.8 FFM – 0.9 FFM – 1.6 RWFM 
0.2 – 1.3 FFM – 1.9 RWFM – 2.3 RWFM 
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The minimum value of the experimental standard devia-
tion observed with 0.001 mgq =  was 0.00029 mgs =  
and 0( ) 0.00030 mg.yσ τ =  Nevertheless, conventional 
analysis of these data will lead to a moderate over-
estimation of uncertainty, as the determined exponents 
( 0.54α =  and 1.54)µ = −  surpass the white noise 
values, and thus the dependence of the variance of the 
sample mean on the number N  of the values in the 
sample is somewhat stronger than inversely proportional 
to .N  The ratio of standard deviation to resolution q  is 
rather insensitive to the type of random process (Fig. 5). 
A significantly better choice for the distinction of data 
sets with zero auto-correlation is the Allan deviation, but 
still it is less reliable than identifying the type of power 
law noise. 

 
3.2. Results  of  power  law  noise  identification 

 
In Method 1, the Barnes 1B  bias function is applied to 
data sets measured with different digital resolutions. The 
results are shown in Fig. 6. Comparing the actual value 
of 1B  with the values expected for the various noise 
types allows identification of the dominant noise type: 
see Table 3. It is evident that dominant random noise 
types depend on the resolution used and change from the 
white noise process for q  ranging from 0.001 mg to 
0.005 mg to the combined 1 f  and 21 f  noise pro-
cesses for q  ranging from 0.02 mg to 0.2 mg. 

In Method 2, the Allan variance as a function of 
averaging factor m  (logarithmic 2σ τ−  plot) calculated 
for different digital resolution units from the same data 
sets as used in Fig. 6 is presented in Fig. 7. The slopes of 
the curves obtained for larger values of q  show that the 
type of random noise is different. The slope of the three 
smallest values of q  is close to – 1, which is 
characteristic of the white noise process (WFM); the  
 
 

 
 

Fig. 6. Random noise type identification with Method 1 as a 
function of digital resolution. 

 
 

Fig. 7. Random noise identification with Method 2: slope of 
the σ 

2–τ curves. 
 
 
slopes of the three largest values of q  are more typical 
of the 1 -noisef  process (FFM). 

For larger averaging factors the slopes of 2σ τ−  
curves tend to be more similar (see Fig. 3), which is 
consistent with an increasing influence of the 
comparator zero drift for the dominating noise in this 
case1. Nevertheless, for the first 20 differences shown in 
Fig. 3 the noise processes are clearly different, and for 
larger resolutions a predictable reduction of uncertainty 
with increasing averaging time cannot be assumed. 

For Method 3, the intermediate calculation results 
are presented in Table 4. In the first step lag 1 corre-
lation coefficients are calculated from mass differences 
obtained by using (9). For the results where 0.25δ >  a  
 

 
Table 4. Random noise identification with Method 3: from 
lag 1 autocorrelation 

 

First step Second step Final 
result 

Resolu-
tion, 
mg Correla-

tion 
r1 

δ Correla-
tion 
r1 

δ Expo-
nent 
α 

0.001 – 0.172  – 0.213      0.4 
0.002 0.091 0.084   – 0.2 
0.005 0.017 0.016   – 0.0 
0.01 0.372 0.271 – 0.175 – 0.206 – 1.6 
0.02 0.560 0.359 – 0.103 – 0.115 – 1.8 
0.05 0.886 0.470   0.167   0.143 – 2.3 
0.1 0.587 0.370 – 0.156 – 0.186 – 1.6 
0.2 0.874 0.466   0.167   0.143 – 2.3 

 
                                                                 
1 Although before the calculation of s2 or the Allan variance 

the zero drift has been eliminated, before signal quantization 
it is fully present and so certainly its amplitude has an 
influence on the outcome of quantization. 
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second step is required (see column 3 of Table 4). After 
differentiating the initial mass differences, the lag 1 
correlation coefficients are calculated again. A third step 
is not needed as 0.25δ <  for all .q  

In Table 3, the exponent α  is determined as a 
function of resolution q  by using all three methods 
described in Section 2.2. As shown in [28], Method 3 
has a better capability for noise identification than the 
other methods. According to this method, two types of 
random noise are evident in connection with digital 
resolution. Our measurements indicate that white noise 
(WFM) dominates for q  in the range from 0.001 mg to 
0.005 mg and random walk type noise (RWFM) is 
typical for q  in the range from 0.01 to 0.2 mg. 

 
 

4. CONCLUSIONS 
 

We measured mass differences obtained from a high-
accuracy comparator set to different digital resolutions 
to study the effect of resolution or digital quantization 
error on the statistical properties of measured data. For 
the resolution of 0.001 mg,q =  the difference between 
the estimated sample variance and the Allan variance is 
insignificant (Fig. 2). This was expected because the 
statistical tools suitable for correlated random data 
would give similar results with conventional uncertainty 
measurement (GUM) practice [1] if the relevant for 
Type A estimation assumptions were fulfilled. Further-
more, the tools intended for random measurements that 
may be correlated can reveal features not considered in 
conventional analysis. For example, as shown in Fig. 2, 
due to a small negative autocorrelation the dependence 
of uncertainty on averaging factor or time is stronger 
( 1.45)µ = −  than for the pure white noise ( 1)µ = −  
often assumed in practice. However, after averaging a 
certain number of points, about 50 to 100, the curve 
tends to the flicker noise with 0.5,µ ≈ −  and further 
averaging obviously will be less effective. 

The data sample measured with 0.001 mgq =  most 
likely fulfils the requirements of QT I and QT II [12], 
samples with 0.002q = mg and 0.005 mgq =  at least 
the requirements of QT II. For resolutions in the range 
0.02–0.2 mg significant differences between the sample 
variance estimated using (3) and the Allan variance 
calculated from (4) or (5) are evident (Fig. 6). This 
indicates that the assumptions needed for Type A 
estimation – randomness and independence of sequent 
observations – are not met and that the tools of Section 2 
are more convenient but would require much larger data 
sets and more complicated calculations. Distinction 
between data sets suitable for conventional analysis and 
data sets requiring more advanced tools cannot be based 
on the ratio of standard deviation to resolution q  as 
proposed previously [32]. Power law noise identification 
or the Allan deviation are much more effective for that. 

Nearly proportional dependence of a standard deviation 
on digital resolution q  presented in Fig. 5 confirms that, 
among the factors causing variability of indications in a 
sample, the digital rounding is often dominating. This is 
true until the comparator would yield the same value 
during the measurements as in the case of 0.5 mg.q =  
The other components arising from internal (Gaussian) 
noise and from the zero drift of the comparator are 
substantially contributing to uncertainty for q = 
0.001 0.005 mg.−  

By using the Allan variance or the Allan deviation of 
measured mass differences as a function of averaging 
time, the relation between finite resolution and the type 
of random process of the sample became very evident 
(Figs 3 and 4). Setting q  from 0.001 mg up to 0.01 mg, 
or even larger, the apparent power law noise exponent is 
switched from white with the slope of 1µ ≈ −  to the 
random walk type with 1µ ≈  (see Figs 3 to 7, Tables 2 
and 3). Concurrently the shape of the PDF of the sample 
changes from bell-type envelope to a distribution with 
strongly dominating side columns. 

We think that for 0.001 mgq =  the requirements for 
QT I are fulfilled, and the shape of the probability 
density function of quantized data is similar to that of 
the initial data. For 0.002q = mg and 0.005 mgq =  the 
requirements for QT II are fulfilled, and the moments of 
the probability density function of quantized data can be 
reliably used. Otherwise, the uncertainty of the mean 
value of the data set measured by using 0.02 mgq >  
cannot be effectively improved by means of averaging, 
and correlation between results must be accounted for. 
Our analysis confirms that the type of random process 
present will affect the estimation of measurement 
uncertainty. Knowing the noise behaviour will facilitate 
the planning of experiment: the optimal averaging or 
integrating time (useful number of repetitions) and the 
best resolution achievable with the particular measure-
ment procedure can be estimated. 
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Piiratud  lahutus  ja  tulemuste  autokorrelatsioon  massimõõtmistel 
 

Viktor Vabson, Riho Vendt, Toomas Kübarsepp ja Mart Noorma 
 

Eksperimentaalselt on uuritud massikomparaatori digitaalse lahutuse mõju mõõteseeria statistilisele jaotusele. 
Kasutati muudetava digitaalse lahutusega massikomparaatorit hästi kontrollitud ja korratavates tingimustes. Sama 
mõõteprotseduuri korrati kaheksa erineva digilahutusega alates komparaatori piirlahutusest 0,001 mg kuni lahutuseni 
0,2 mg. Suurima ja väikseima lahutuse suhe oli 200 korda. Iga erineva lahutuse korral mõõdeti seeria, milles oli 
vähemalt 150 üksiktulemust. Kasutatud digilahutuse ja mõõteseeriat iseloomustava juhusliku protsessi vahel ilmnes 
selge seos. Analüüs näitas, et nn valge müra tüüpi protsess domineeris väiksemate digisammudega (0,001 mg kuni 
0,005 mg) saadud mõõteseeriate korral. Tavapäraselt eeldatava valge müra tüüpi protsessi puhul on aritmeetilise 
keskmise dispersioon pöördvõrdeline keskmistatud tulemuste arvuga. Digisammude 0,01 mg kuni 0,2 mg korral 
domineeris madalsageduslik 1/f 2 müra, mil aritmeetilise keskmise dispersioon oli võrdeline keskmistatud tulemuste 
arvuga. Seega ilmnes, et mõõtevahendi digilahutus piirab massimõõtmiste lahutust vaid tugeva positiivse korrelat-
siooni korral mõõteseerias ja see on iseloomulik suuremate digisammude (0,01 mg kuni 0,2 mg) korral. On ilmne 
massimõõtmiste analoogia aja ja sageduse metroloogiaga, kus allika stabiilsushinnangut piirab protsessist sõltuv 
optimaalne keskmistamisaeg. Komparaatori lahutuse 0,001 mg korral võib massierinevuste seeria keskmine 
standardhälve (0,00003 mg) olla üle kümne korra väiksem üksiktulemuste standardhälbest (0,0005 mg) või tava-
pärasest digilahutuse määramatuse B-tüüpi hinnangust (0,00029 mg). 

 
 
 
 


